Tìm các số nguyên m và n để đa thức P(x) = x^4 + mx^3 + 29x^2 + nx + 4(n thuộc Z) là một số chính phương.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho đa thức f(x)=\(x^4+mx^3+29x^2+nx+4\) (x thuộc Z).Tìm m.n sao cho f(x) là số chính phương(m,n>=0)
Đặt \(x^4+mx^3+29x^2+nx+4=\left(x^2+ax+2\right)^2=x^4+a^2x^2+4+2ax^3+4ax^2+4ax\)
\(=x^4+2ax^3+\left(a^2+4a\right)x^2+4ax+4\)
=>a2 +4a = 29 => a+2 =+- 5 => a =3 hoặc a =-7
=>n =4a =
=> m =2a =
Lời giải:
Vì hệ số bậc cao nhất là $1$ và hệ số tự do là $4$ nên để đa thức đã cho là một số chính phương thì ta có thể viết nó dưới dạng:
\(P(x)=x^4+mx^3+29x^2+nx+4=(x^2+ax+2)^2\)
\(\Leftrightarrow x^4+mx^3+29x^2+nx+4=x^4+a^2x^2+4+2ax^3+4x^2+4ax\)
\(\Leftrightarrow x^4+mx^3+29x^2+nx+4=x^4+2ax^3+x^2(a^2+4)+4ax+4\)
Đồng nhất hệ số:
\(\Rightarrow \left\{\begin{matrix} m=2a\\ 29=a^2+4\\ n=4a\end{matrix}\right.\Rightarrow \left\{\begin{matrix} m=2a\\ a^2=25\rightarrow a=\pm 5\\ n=4a\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} \left\{\begin{matrix} m=10\\ n=20\end{matrix}\right.\\ \left\{\begin{matrix} m=-10\\ n=-20\end{matrix}\right.\end{matrix}\right.\)
a) Thay x = 1 vào M(x), ta được:
\(M\left(x\right)=m.1^2+2m.1-6=m+2m-6=3m-6=0\)
\(\Leftrightarrow3m=6\Leftrightarrow m=2\)
Vậy m = 2 thì M(x) có nghiệm bằng 1
Tìm mọi số nguyên m sao cho đa thức A(x)= x^4 + 2mx^3 - 4mx + 4 (x thuộc Z) là một bình phương đúng.
Để ý hệ số cao nhất là 1, hệ số tự do là 4. Nếu A(x) phân tích được thành nhân tử thì nó có 1 trong 2 dạng sau:
Dạng 1: \(A\left(x\right)=\left(x^2+ax+2\right)^2=x^4+2ax^3+\left(a^2+4\right)x^2+4ax+4\)
Đồng nhất hệ số, ta có: \(2a=2m;\text{ }a^2+4=0;\text{ }4a=-4m\text{ (vô nghiệm)}\)
Dạng 2: \(A\left(x\right)=\left(x^2+ax-2\right)^2=x^4+2ax^3+\left(a^2-4\right)x^2-4ax+4\)
Đồng nhất hệ số: \(2a=2m;\text{ }a^2-4=0;\text{ }-4a=-4m\)
\(\Leftrightarrow a=m;\text{ }\left(a=2\text{ hoặc }a=-2\right)\)
\(\Rightarrow m=2\text{ hoặc }m=-2\)
P(x) chia hết cho x - 2
=> P(2) = 0
=> \(2^4+m.2^3-55.2^2+2n-156=0\)<=> 8m + 2n = 360 => 4m + n = 180
P(x) chia hết cho x - 3
=> P(3) = 0
=> \(3^4+m.3^3-55.3^2+3n-156=0\)<=> 27m + 3n = 570 => 9m + n = 190
=> ( 9m + n ) - ( 4m+ n ) = 190 - 180
=> 5m = 10
=> m = 2
=> 4.2 + n = 180 => n = 172
Vậy P(x) = \(x^4+2x^3-55x^2+172x-156\)
P(x) chia hết cho x-2<=>P(2)=24 + 8m - 220 +2n - 156 =0 (1)
P(x) chia hết cho x-3<= >P(3)=34 + 27m - 495 + 3n -156=0 (2)
Từ (1) và (2) suy ra:
{16+8m-220+2n-156=0 <=>8m+2n=360
{81+27m-495+3n-156=0 <=>27m+3n=570
Giair hệ phương trình ta được
m=2 và n=172
thay m,n vào P(x), ta được:
P(x)=x4+2x3-55x2+172x-156
<=>P(x)=(x-2)(x-3)(x2+7x+6)<=>P(x)=0
<=>[x-2=0 <=>x=2
[x-3=0 <=>x=3
[x2+7x+6=0 <=>x=-7+3√17 / 2 hoặc x=7-3√17 / 2