cho các số thực a,b,x,y thỏa mãn:x+y=a+b và x^2+y^2=a^2+b^2.CMR:x^4+y^4=a^4+b^4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta co:
\(\frac{x^4}{a}+\frac{y^4}{b}\ge\frac{\left(x^2+y^2\right)^2}{a+b}=\frac{1}{a+b}\)
Dau '=' xay ra khi \(\frac{x^2}{a}=\frac{y^2}{b}\)
Ta lai co:
\(\frac{x^6}{a^3}+\frac{y^6}{b^3}=\left(\frac{x^2}{a}\right)^3+\left(\frac{y^2}{b}\right)^3=2\left(\frac{x^2}{a}\right)^3\)
Ma \(\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}=\frac{1}{a+b}\)
\(\Rightarrow x^2=\frac{a}{a+b}\)
\(\Leftrightarrow\frac{x^2}{a}=\frac{1}{a+b}\)
\(\Leftrightarrow\left(\frac{x^2}{a}\right)^3=\frac{1}{\left(a+b\right)^3}\)
\(\Rightarrow\frac{x^6}{a^3}+\frac{y^6}{b^3}=\frac{2}{\left(a+b\right)^3}\)
Ta có:
\(x\left(x-a\right)\left(x+a\right)\left(x+2a\right)+a^4\)
\(\Leftrightarrow\) \(\left[x.\left(x+a\right)\right]\left[\left(x-a\right).\left(x+2a\right)\right]+a^4\)
\(\Leftrightarrow\) \(\left(x^2+ax\right)\left(x^2+ax-2a^2\right)+a^4\)
Đặt b = \(\left(x^2+ax\right)\)
Khi đó đa thức đã cho có dạng:
\(b\left(b-2a^2+a^4\right)\)
\(\Leftrightarrow\) \(b^2-2a^2b+a^4\)
\(\Leftrightarrow\) \(\left(b-a^2\right)^2\)
\(\Leftrightarrow\) \(\left(x^2+ax-a^2\right)^2\)
hay \(x\left(x-a\right)\left(x+a\right)\left(x+2a\right)+a^4\) là bình phương của 1 đa thức
mọi người có biết khi âm điểm thì phải làm thế nào để hết âm điểm ko
Ta có: x + y = a + b
<=> (x + y)2 = (a + b)2
<=> x2 + 2xy + y2 = a2 + 2ab + b2
<=> 2xy = 2ab (vì x2 + y2 = a2 + b2)
<=> xy = ab <=> x2y2 = a2b2
Lại có: x4 + y4 = (x2 + y2)2 - 2x2y2
a4 + b4 = (a2 + b2)2 - 2a2b2
Mà x2y2 = a2b2 (cm) ; x2 + y2 = a2 + b2
=> x4 + y4 = a4 + b4