K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2017

a)Ta có: ab+ac+bc=-7                        (ab+ac+bc)^2=49

nên

(ab)^2+(bc)^2+(ac)^2=49

nên a^4+b^4+c^4=(a^2+b^2+c^2)^2−2(ab)^2−2(ac)^2−2(bc^)2=98

b) (x^2+y^2+z^2)/(a^2+b^2+c^2)= 
=x^2/a^2+y^2/b^2+z^2/c^2 <=> 
x^2+y^2+z^2=x^2+(a^2/b^2)y^2+ 
+(a^2/c^2)z^2+(b^2/a^2)x^2+y^2+ 
+(b^2/c^2)z^2+(c^2/a^2)x^2+ 
+(c^2/b^2)y^2+z^2 <=> 
[(b^2+c^2)/a^2]x^2+[(a^2+c^2)/b^2]y^2+ 
+[(a^2+b^2)/c^2]z^2 = 0 (*) 
Đặt A=[(b^2+c^2)/a^2]x^2; B=[(a^2+c^2)/b^2]y^2; 
và C=[(a^2+b^2)/c^2]z^2 
Vì a,b,c khác 0 nên suy ra A,B,C đều không âm 
Từ (*) ta có A+B+C=0 
Tổng 3 số không âm bằng 0 thì cả 3 số đều phải bằng 0,tức A=B=C=0 
Vì a,b,c khác 0 nên [(b^2+c^2)/c^2]>0 =>x^2=0 =>x=0 
Tương tự B=C=0 =>y^2=z^2=0 => y=z=0 
Vậy x^2011+y^2011+z^2011=0 
Và x^2008+y^2008+z^2008=0.

24 tháng 2 2017

câu 1 là :từ a/x + b/y + c/z =0 suy ra (ayz+bxz+cxy)/xyz =0 suy ra ayz+bxz+cxy=0 (1)

vì x/a + y/b + z/c =1 (gt) suy ra (x/a + y/b + z/c )^2 = 1^2 . suy ra x^2/a^2 + y^2/b^2 + z^2/c^2 + 2(xy/ab + yz/bc + xz/ac) =1

suy ra x^2/a^2 + y^2/b^2 + z^2/c^2 + 2[(ayz+bxz+cxy)/abc = 1 (2)

Từ (1) và (2) suy ra x^2/a^2 + y^2/b^2 + z^2/c^2 =1 (đpcm)

24 tháng 2 2017

câu 3 98

20 tháng 6 2019

2) Có: \(a+b+c=0\)

\(\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ac\right)\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2=4\left(ab+bc+ac\right)^2\)

\(\Leftrightarrow VT=4\left[\left(ab\right)^2+\left(bc\right)^2+\left(ac\right)^2-2abc\left(a+b+c\right)\right]\)

\(\Leftrightarrow VT=4\left(ab\right)^2+4\left(ac\right)^2+4\left(bc\right)^2\)

Có: \(a+b+c=0\Rightarrow a+b=-c\Leftrightarrow\left(a+b\right)^2=c^2\Leftrightarrow2ab=c^2-a^2-b^2\)

Tương tự:...

\(VT=\text{Σ}_{cyc}\left(c^2-a^2-b^2\right)^2=2\left(a^4+b^4+c^4\right)=VP\)

10 tháng 10 2017

1,

\(x^2+y^2+y^2=14\)

\(\Rightarrow\left(x+y+z\right)^2-2xy-2yz-2zx=14\)

\(\Rightarrow-2\left(xy+yz+zx\right)=14\)

\(\Rightarrow xy+yz+zx=-7\)

\(\Rightarrow\left(xy+yz+zx\right)^2=49\)

\(\Leftrightarrow x^2y^2+y^2z^2+z^2x^2+2x^2yz+2xy^2z+2xyz^2=49\)

\(\Leftrightarrow x^2y^2+y^2z^2+z^2x^2+2xyz\left(x+y+z\right)=49\)

\(\Leftrightarrow x^2y^2+y^2z^2+z^2x^2=49\)

Ta có: \(x^4+y^4+z^4\)

\(=\left(x^2+y^2+z^2\right)^2-2x^2y^2-2y^2z^2-2z^2x^2\)

\(=14^2-2\left(x^2y^2+y^2z^2+z^2x^2\right)\)

\(=14^2-2.49\)

\(=196-98\)

\(=98\)

24 tháng 5 2017

\(x+y+z=0< =>x+y=-z=>\left(x+y\right)^2=\left(-z\right)^2.\)

\(< =>x^2+2xy+y^2=z^2< =>x^2+y^2-z^2=-2xy\)

\(< =>\left(x^2+y^2-z^2\right)=\left(-2xy\right)^2\)

\(< =>x^4+y^4+z^4+2x^2y^2-2x^2z^2-2y^2z^2=4x^2y^2\)

\(< =>x^4+y^4+z^4=2x^2y^2+2y^2z^2+2x^2z^2\)

\(< =>2\left(x^4+y^4+z^4\right)=x^4+y^4+z^4+2x^2y^2+2y^2z^2+2x^2z^2=\left(x^2+y^2+z^2\right)^2.\)

\(< =>x^4+y^4+z^4=\frac{\left(x^2+y^2+z^2\right)^2}{2}=\frac{a^4}{2}\)

Vậy \(x^4+y^4+z^4=\frac{a^4}{2}\)

8 tháng 8 2016

Bài 1

\(x+y+z=0\)

\(\Leftrightarrow x+y=-z\)

\(\Leftrightarrow\left(x+y\right)^3=-z^3\)

\(\Leftrightarrow x^3+y^3+3xy\left(x+y\right)=-z^3\)

\(\Leftrightarrow x^3+y^3-3xyz=-z^3\) (vì x+y=-z)

\(\Leftrightarrow x^3+y^3+z^3=3xyz\)

NV
16 tháng 3 2019

a/ \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+ac+bc\right)=0\)

\(\Rightarrow ab+ac+bc=-7\Rightarrow\left(ab+ac+bc\right)^2=49\)

\(\Rightarrow\left(ab\right)^2+\left(ac\right)^2+\left(bc\right)^2+2a^2bc+2ab^2c+2abc^2=49\)

\(\Rightarrow\left(ab\right)^2+\left(ac\right)^2+\left(bc\right)^2+2abc\left(a+b+c\right)=49\)

\(\Rightarrow\left(ab\right)^2+\left(ac\right)^2+\left(bc\right)^2=49\)

Ta có:

\(a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2\left(\left(ac\right)^2+\left(ac\right)^2+\left(bc\right)^2\right)=14^2-2.49=98\)

b/ \(\frac{x^2}{a^2}-\frac{x^2}{a^2+b^2+c^2}+\frac{y^2}{b^2}-\frac{y^2}{a^2+b^2+c^2}-\frac{z^2}{c^2}-\frac{z^2}{a^2+b^2+c^2}=0\)

\(\Leftrightarrow x^2\left(\frac{b^2+c^2}{\left(a^2+b^2+c^2\right)a^2}\right)+y^2\left(\frac{a^2+c^2}{\left(a^2+b^2+c^2\right)b^2}\right)+z^2\left(\frac{a^2+b^2}{\left(a^2+b^2+c^2\right)c^2}\right)=0\)

\(\Leftrightarrow x^2=y^2=z^2=0\) (do \(a;b;c\ne0\))

\(\Rightarrow x=y=z=0\Rightarrow P=0\)

20 tháng 7 2017

1.a>0.√a

2.c/mb/z+x/y=a/b6

=x/y=y/x

4.xxy/2 2

5.a/b+ab=ab2