chứng minh rằng tích 3 số tự nhiên liên tiếp chia hết cho 3
các bạn làm xong bài này vơi bài kia rồi mình tick cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi 2 số tự nhiên liên tiếp là a; a + 1
Ta có:
\(a.\left(a+1\right)\)
\(=a.a+a\)
\(2a+a\)
\(\Rightarrow a.\left(a+1\right)⋮2\)
Vậy tích của 2 số tự nhiên liên tiếp chia hết cho 2
b) Gọi 3 số tự nhiên liên tiếp là a; a + 1; a + 2
Ta có
\(a.\left(a+1\right).\left(a+2\right)\)
\(=\left(2a+a\right).\left(a+2\right)\)
\(=3a+\left(a+2\right)\)
\(~HT~\)
Bài 1 sai đề :
Ví dụ : 3 số 1 , 2 và 3 có tích là 1x2x3 = 6 ko chia hết cho 48
bài 2 dùng các dấu hiệu chia hết
Gợi ý: a, chia hết cho 5 và 9
b , chia hết cho 3 và 5
c, chia hết cho 5 và 11
#)Giải :
Bài 1 :
Trong 2 số tự nhiên liên tiếp luôn là hai số : chẵn và lẻ hoặc lẻ và chẵn
Mà các số chẵn luôn chia hết cho 2
=> Trong hai số tự nhiên liên tiếp luôn có một số chia hết cho 2 ( đpcm )
Bài 2 :
Ta có : aaaaaa = a x 111111 = a x 7 x 15873
=> aaaaaa chia hết cho 7
Bài 1
Gọi 3 số tự nhiên liên tiếp là n; n+1; n+2. Tổng của chúng là
n+n+1+n+2=3n+3=3(n+1) chia hết cho 3
Gọi 4 số tự nhiên liên tiếp là n; n+1; n+2; n+3. Tổng của chúng là
n+n+1+n+2+n+3=4n+6=4n+4+2=4(n+1)+2 chia cho 4 dư 2
Bài 2
(Xét tính chẵn hoặc lẻ của n)
+ Nếu n lẻ thì n+3 chẵn; n+6 lẻ => (n+3)(n+6) chẵn => chia hết cho 2
+ Nếu n chẵn thì n+3 lẻ, n+6 chẵn => (n+3)(n+6) chẵn => chia hết cho 2
=> (n+3)(n+6) chia hết cho 2 với mọi n
gọi 3 số tự nhiên Liên tiếp là: a,a+1,a+2. => a+(a+1)(a+2)=a+a+1+a+2=3a+3. 3a chia hết cho 3,3 cũng chia hết cho 3 => tổng này luôn luôn chia hết cho 3
gọi 3 số tự nhiên Liên tiếp là: a,a+1,a+2.
=> a+(a+1)(a+2)=a+a+1+a+2=3a+3.
3a chia hết cho 3,3 cũng chia hết cho 3
=> tổng này luôn luôn chia hết cho 3.
trong 3 số tự nhiên liên tiếp,luôn có 1 số chia hết cho3
vậy nhân lên bao nhiêu đi nx thì tích đó vẫn chia hết 3
vậy tích 3 số tự nhiên liên tiếp luôn chia hết cho 3