cho tam giác ABC, AH⊥BC (H nằm Giữa B và C). M là trung điểm BC. Biết
∠BAH=∠CAM.
a) CMR: \(\dfrac{HB}{HC}=\dfrac{AB^2}{AC^2}\)
b) CMR: AB=AC hoặc ∠BAC=90 độ
Ai giải giúp em với ạ. Em gấp lắm rùi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
Xét hai tam giác BAC và BHA có:
\(\left\{{}\begin{matrix}\widehat{ABH}\text{ chung}\\\widehat{BAC}=\widehat{BHA}=90^0\end{matrix}\right.\)
\(\Rightarrow\Delta BAC\sim\Delta BHA\left(g.g\right)\)
b.
Áp dụng định lý Pitago cho tam giác vuông ABC:
\(BC^2=AB^2+AC^2\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5\)
Do \(\Delta BAC\sim\Delta BHA\Rightarrow\dfrac{BC}{AB}=\dfrac{AC}{AH}\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{3.4}{5}=\dfrac{12}{5}\)
Áp dụng định lý Pitago cho tam giác vuông ABH:
\(BH=\sqrt{AB^2-AH^2}=\dfrac{9}{5}\)
\(CH=BC-BH=\dfrac{16}{5}\)
c.
Do BD là phân giác góc B, áp dụng định lý phân giác cho tam giác ABC:
\(\dfrac{DC}{AD}=\dfrac{BC}{AB}\) (1)
Áp dụng định lý phân giác cho tam giác ABH:
\(\dfrac{AM}{HM}=\dfrac{AB}{BH}\) (2)
Lại có \(\Delta BAC\sim\Delta BHA\Rightarrow\dfrac{BC}{AB}=\dfrac{AB}{BH}\) (3)
(1);(2);(3) \(\Rightarrow\dfrac{DC}{AD}=\dfrac{AM}{HM}\Rightarrow AM.AD=HM.CD\)
a) Xét \(\Delta ABH\)và \(\Delta AHC\)có:
AB = AC (gt)
\(\widehat{AHB}=\widehat{AHC}\left(=90^o\right)\)
\(\Rightarrow\Delta ABH=\Delta AHC\left(Ch-gn\right)\)
\(\Rightarrow HB=HC\)(2 cạnh tương ứng)
\(\Rightarrow\widehat{BAH}=\widehat{HAC}\)
b) Ta có : HB=HC (cma )
Mà HB + HC = BC
=> HB = HC = 4 cm
Xét \(\Delta ABH\)vuông tại H có : AB2=HA2+BH2 (Pytago)
=> AH2 = AB2 - HB2
=> AH2 = 52 - 42 = 9
=> AH = 3 (cm)
c) Xét \(\Delta HBD\)và \(\Delta HEC\)có:
HB = HC (cma)
\(\widehat{HDB}=\widehat{HEC}\left(=90^o\right)\)
=> \(\Delta HBD=\Delta HEC\left(Ch-gn\right)\)
=> HD = HC ( 2 cạnh tương ứng)
=> \(\Delta HDE\)cân tại H
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
b: Xét tứ giác ANMC có
I là trung điểm của AM
I là trung điểm của CN
Do đó: ANMC là hình bình hành
Suy ra: AN//MC
hay AN//BC
c: Xét tứ giác ABMK có
I là trung điểm của BK
I là trung điểm của AM
Do đó: ABMK là hình bình hành
Suy ra: AK//BM
hay AK//BC
mà AN//BC
và AN,AK có điểm chung là A
nên A,N,K thẳng hàng
Từng bài 1 thôi nha!
Mình làm bài 3 cho dễ
Bn tự vẽ hình
a) CM tg ABH=tg ACH (ch-cgv)
=> HC=HB=2 góc tương ứng
Nên H là trung điểm BC
=> HB=HC=BC:2=8:2=4 ; góc BAH= góc CAH
b) Có: tg ABH vuông tại H (AH vuông góc BC)
=> AH2+BH2=AB2 => AH2+42=52 => AH2=9
Mà AH>O Nên AH=3
c) Xét tg ADH và tg AEH có:
\(\Delta ADH=\Delta AEH\left(ch-gh\right)\hept{\begin{cases}\widehat{ADH}=\widehat{AEH}=90^o\\AHcanhchung\\\widehat{DAH}=\widehat{EAH}\left(\Delta ABH=\Delta ACH\right)\end{cases}}\)
=> HD=HE(2 góc tương ứng)
=> tg HDE cân tại H
Lời giải:
a.
Vì $\widehat{BAH}=\widehat{CAM}$ nên $\widehat{BAM]=\widehat{CAH}$
Ta có:
\(\frac{HB}{HC}=\frac{S_{BAH}}{S_{CAH}}=\frac{BA.AH.\sin \widehat{BAH}}{CA.AH.\sin \widehat{CAH}}=\frac{AB}{AC}.\frac{\sin \widehat{CAM}}{\sin \widehat{BAM}}(1)\)
\(1=\frac{BM}{CM}=\frac{S_{BAM}}{S_{CAM}}=\frac{AB.AM\sin \widehat{BAM}}{AC.AM.\sin \widehat{CAM}}=\frac{AB.\sin \widehat{BAM}}{AC\sin \widehat{CAM}}\)
\(\Rightarrow \frac{\sin \widehat{CAM}}{\sin \widehat{BAM}}=\frac{AB}{AC}(2)\)
Từ $(1);(2)\Rightarrow \frac{HB}{HC}=\frac{AB^2}{AC^2}$
b.
Đặt $AB=c; BC=a; CA=b$ thì theo phần a ta có:
$\frac{BH}{CH}=\frac{c^2}{b^2}\Rightarrow \frac{BH}{a}=\frac{c^2}{b^2+c^2}$
$\Rightarrow BH=\frac{ac^2}{b^2+c^2}$
$CH=\frac{ab^2}{b^2+c^2}$
Theo định lý Pitago:
$c^2-BH^2=b^2-CH^2$
$\Leftrightarrow c^2-\frac{a^2c^4}{(b^2+c^2)^2}=b^2-\frac{a^2b^4}{(b^2+c^2)^2}$
$\Leftrightarrow (b^2-c^2)=\frac{a^2(b^4-c^4)}{(b^2+c^2)^2}$
$\Leftrightarrow b^2-c^2=\frac{a^2(b^2-c^2)}{b^2+c^2}$
$\Leftrightarrow (b^2-c^2)(b^2+c^2)=a^2(b^2-c^2)$
$\Rightarrow b^2-c^2=0$ hoặc $b^2+c^2=a^2$
$\Leftrightarrow AB=AC$ hoặc tam giác $ABC$ vuông tại $A$.
Hình vẽ: