tìm a,b để F(x)=x^4+ax^3 +b chia hết cho Q(x)=x^2-1
giúp mk vs nka..mk đang cần gấp!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a: \(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
=-5n chia hết cho 5
b: \(\left(n-1\right)\left(n+4\right)-\left(n-4\right)\left(n+1\right)\)
\(=n^2+4n-n-4-\left(n^2+n-4n-4\right)\)
\(=n^2+3n-4-\left(n^2-3n-4\right)\)
\(=6n⋮6\)
hôm nay bọn mik vừa hok về chưa thấm đâu vô đâu nên kg giúp đc xin lỗi nhe!
Mk lm giúp câu a , các câu cn lại tương tự nha bn
\(A=ax^3+bx^2-3x-2\)
\(B=\left(x-1\right)\left(x+2\right)=x^2+x-2\)
Gọi C là thương của phép chia A cho B
=> A = B.C
Đa thức A có bậc 3 chia cho đa thức B có bậc 2 sẽ được thương có bậc 1
=> C có dạng \(cx+d\)
=> \(ax^{3\:}+bx^2-3x-2=\left(x^2+x-2\right)\left(cx+d\right)\)
\(\Rightarrow ax^{3\:}+bx^2-3x-2=cx^3+dx^2+cx^2+dx-2cx-2d\)
\(\Rightarrow ax^{3\:}+bx^2-3x-2=cx^3+\left(d+c\right)x^2+\left(d-2c\right)x-2d\)
\(\Rightarrow\left\{{}\begin{matrix}ax^{3\: }=cx^3\\bx^2=\left(d+c\right)x^2\\-3x=\left(d-2c\right)x\\-2=-2d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=c\\d+c=b\\d-2c=-3\\d=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=c\\d+c=b\\1-2c=-3\\d=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=c\\c+d=b\\c=2\\d=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=2\\b=2+1=3\\c=2\\d=1\end{matrix}\right.\)
Vậy \(A=2x^3+3x^2-3x-2\)
a: \(x^3+x^2-2x+a⋮x+1\)
\(\Leftrightarrow x^3+x^2-2x-2+a+2⋮x+1\)
=>a+2=0
hay a=-2
b: \(2x^3-4x^2-3a⋮2x-3\)
\(\Leftrightarrow2x^3-3x^2-x^2+1.5x-1.5x+2.25-3a-2.25⋮2x-3\)=>-3a-2,25=0
=>-3a=2,25
hay a=-0,75
c: \(4x^4+3x^2-ax+3⋮x+3\)
\(\Leftrightarrow4x^4+12x^3-12x^3-36x^2+39x^2+117x-ax+3⋮x+3\)
\(\Leftrightarrow-ax+3⋮x+3\)
\(\Leftrightarrow-ax-3a+3+3a⋮x+3\)
=>3a+3=0
hay a=-1
a, x^2 - 2x + 7
= x( x-2) + 7
ta có x(x-2) chia hết cho x- 2
nên để x^2 - 2x + 7 chia hết cho 2
thì 7 chia hết cho x- 2
=> x-2 thuộc ước của 7
đến đây tự làm tiếp
Gọi thương của phép chia F(x) cho Q(x) là A(x)
Theo bài ra ta có: \(F\left(x\right)=x^4+ax^3+b=\left(x^2-1\right).A\left(x\right)\)
\(=\left(x-1\right)\left(x+1\right).A\left(x\right)\)
Do giá trị của biếu thức trên luôn đúng với mọi x nên lần lượt thay \(x=1;\)\(x=-1\)ta được:
\(\hept{\begin{cases}a+b+1=0\\-a+b+1=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}a=0\\b=-1\end{cases}}\)
Vậy....
Gọi thương của 2 đa thức trên là : R(x)
\(\Rightarrow x^4+ax^3+b=\left(x^2-1\right)R\left(x\right)\)
\(\Rightarrow x^4+ax^3+b=\left(x-1\right)\left(x+1\right)R\left(x\right)\)
Vì đẳng thức trên đúng với mọi x nên cho x = 1 và x = -1 ta có :
\(\hept{\begin{cases}x=1\Rightarrow1+a+b=0\Rightarrow a+b=-1\\x=-1\Rightarrow1-a+b=0\Rightarrow a-b=1\end{cases}}\)
\(\Rightarrow a=\left(1+-1\right):2=0\)
\(b=0-1=-1\)