K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2019

Áp dụng công thức:  (m – n). ( m+ n) = m2 – n2 => m2 – n2 chia hết (m – n)

Ta có : f(x)=ax2- bx + c

=> Tính chất: f (m) – f(n) chia hết ( m – n)

Ta có:

 f(104) – f(9) chia hết 105

=> f(104) – f(9) chia hết 5

=> f(104) chia hết 5

Mặt khác:

f(104) – f(5) chia hết 99

=> f(104) – f(5) chia hết 9

=> f(104) chia hết 9

Vậy f(104) chia hết (5.9) = 45 

1 tháng 10 2019

Áp dụng công thức:  (m – n). ( m+ n) = m2 – n2 => m2 – n2 chia hết (m – n)

Ta có : f(x)=ax2- bx + c

=> Tính chất: f (m) – f(n) chia hết ( m – n)

Ta có:

 f(104) – f(9) chia hết 105

=> f(104) – f(9) chia hết 5

=> f(104) chia hết 5

Mặt khác:

f(104) – f(5) chia hết 99

=> f(104) – f(5) chia hết 9

=> f(104) chia hết 9

Vậy f(104) chia hết (5.9) = 45 

17 tháng 2 2020

f(5)=25a+5b+c chia hết cho 9;f(9)=81a+9b+c chia hết cho 5

ta có:f(104)=10816a+104b+c=(81a+9b+c)+(10735a+95b) chia hết cho 5

=(25a+5b+c)+(10791a+99b) chia hết cho 9

Mà (5,9)=1

Nên f(104) chia hết cho 45(đpcm)

1 tháng 10 2019

Áp dụng công thức:  (m – n). ( m+ n) = m2 – n2 => m2 – n2 \(⋮\) (m – n)

Ta có : f(x)=ax2-bx+c

=> Tính chất: f (m) – f(n) \(⋮\) ( m – n)

Ta có:

 f(104) – f(9) \(⋮\)105

=> f(104) – f(9) \(⋮\)5

=> f(104) \(⋮\)5

Mặt khác:

f(104) – f(5) \(⋮\)99

=> f(104) – f(5) \(⋮\)9

=> f(104) \(⋮\)9

Vậy f(104) \(⋮\)(5.9) = 45 

1 tháng 10 2019

tự hỏi tự trả lời là sao vậy bạn

31 tháng 3 2016

Ta có:

\(f\left(1\right)=a+b+c\text{⋮7 }\)

\(f\left(2\right)=4a+2b+c⋮7\)

\(\Rightarrow f\left(2\right)-f\left(1\right)=3a+b⋮7\)

\(f\left(3\right)=9a+3b+c=3\left(3a+b\right)+c⋮7\)

Mà \(3a+b⋮7\)

\(\Rightarrow c⋮7\)

Mà \(a+b+c⋮7\)

\(\Rightarrow a+b⋮7\)

Mà \(4a+2b+c⋮7\)

\(\Rightarrow4a+2b=2\left(2a+b\right)⋮7\)

\(2\text{̸ ⋮̸7}\)

\(\Rightarrow2a+b⋮7\)

Mà \(a+b⋮7\)

\(\Rightarrow\left(2a+b\right)-\left(a+b\right)=a⋮7\)

Có \(a⋮7;c⋮7;a+b+c⋮7\)

\(\Rightarrow b⋮7\)

\(f\left(m\right)=am^2+bm+c\)

Như vậy \(\Rightarrow am^2⋮7;bm⋮7;c⋮7\)

\(\Rightarrow a.x^2+bx+c⋮7\)

Do đó với bất kỳ giá trị nào của m nguyên thì f(m)⋮7

17 tháng 2 2020

  a)    Ta có:\(x.f\left(x+1\right)=\left(x+2\right).f\left(x\right)\)

   +)Thay \(x=0\) ta có:\(2.f\left(0\right)=0\)\(\implies\) \(f\left(0\right)=0\)

     Vậy đa thức \(f\left(x\right)\) có nghiệm là x=0 (1)

   +)Thay \(x=-2\) ta có:\(-2.f\left(-1\right)=0\)\(\implies\) \(f\left(-1\right)=0\)

     Vậy đa thức \(f\left(x\right)\) có nghiệm là x=-1 (2)

Từ (1),(2)

    \(\implies\) đa thức \(f\left(x\right)\) có ít nhất hai nghiệm

17 tháng 2 2020

b)Ta có:\(f\left(x\right)=ax^2+bx+c\)

+)Với x=0 \(\implies\) \(f\left(0\right)=a.0^2+b.0+c=c:2007\left(1\right)\)

+)Với x=1 \(\implies\) \(f\left(1\right)=a.1^2+b.1+c=a+b+c:2007\left(2\right)\)

+)Với x=-1 \(\implies\) \(f\left(-1\right)=a.\left(-1\right)^2-b.1+c=a-b+c:2007\left(3\right)\)

Từ (2);(3) cộng vế với vế ta được:

                  \(\implies\) \(f\left(1\right)+f\left(-1\right)=a+b+c+a-b+c\)

                                                           \(=2a+2c\)

                                                           \(=2.\left(a+c\right):2007\)

    mà \(\left(2,2007\right)=1\)\(\implies\) \(a+c:2007\) \(\left(4\right)\)

Từ \(\left(1\right),\left(4\right)\) \(\implies\) \(a:2007\) \(\left(5\right)\)

Từ \(\left(4\right),\left(2\right)\) \(\implies\) \(b:2007\) \(\left(6\right)\)

Từ \(\left(1\right),\left(5\right),\left(6\right)\) \(\implies\) các hệ số a,b,c đều chia hết cho 2007\(\left(đpcm\right)\)