So sánh
A=1+3+3mũ2+3 mũ4+3 mũ5+3 mũ6
B=3 mũ7-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 1 + 2 + 22 + 23 + 24 + 25 + 26 + 27
= (1 + 2) + (22 + 23) + (24 + 25) + (26 + 27)
= (1 + 2) + 22(1 + 2) + 24(1 + 2) + 26(1 + 2)
= (1 + 2)(1 + 22 + 24 + 26)
= 3(1 + 22 + 24 + 26) \(⋮3\)(ĐPCM)
2S = 1 + 2 + 22 + 23 + 24 + 25 + 26 + 27
S = (1+2 ) + (22 + 23 ) + (24 + 25 ) + (26 +27)
S = 3 + 22(1+2) + 24(1+2) + 26(1+2)
S = 3+22.3 + 24.3 + 26 .3
S = 3(1+22 + 24 + 26 ) \(⋮\) 3
=> đpcm
\(\frac{-3.7^4+7^3}{7^5.6-7^3.2}=\frac{7^3\left(-3.7+1\right)}{7^3\left(7^2.6-2\right)}=\frac{-21+1}{49.6-2=4}=\frac{-20}{290}\)
A=2+22+23+24+25+26
=2.(1+2+22+23+24+25)
=2.(1+2+4+8+16+32)
=2.63
=2.7.9 chia hết cho 9(vì trong tích có 1 thừa số là 9)
Chúc bạn học giỏi nha!!!
K cho mik vs nhé Mai Phước Trí
(-5).7.(-12).|-4|.(-8)
= -35.(-12).4.(-8)
=420.4.(-8)
=1680.(-8)
=-13440
1/ (-5).7.(-12).|-4|.(-8) = -13440
2/ x-(-19)+(-2)mũ 5=14-(-2)mũ 4 => x=(-7)
3/ x+4y-xy =15; không có x;y thỏa mãn đề bài, nếu 3x+4y-xy =16 thì x=8;y=2
a, Ta có: \(\left(\dfrac{1}{2}\right)^{300}=\left[\left(\dfrac{1}{2}\right)^3\right]^{100}=\left(\dfrac{1}{8}\right)^{100}\)
\(\left(\dfrac{1}{3}\right)^{200}=\left[\left(\dfrac{1}{3}\right)^2\right]^{100}=\left(\dfrac{1}{9}\right)^{100}\)
=> \(\left(\dfrac{1}{8}\right)^{100}>\left(\dfrac{1}{9}\right)^{100}\)=> \(\left(\dfrac{1}{2}\right)^{300}>\left(\dfrac{1}{3}\right)^{200}\)
b, Ta có: \(\left(\dfrac{1}{3}\right)^{75}=\left[\left(\dfrac{1}{3}\right)^3\right]^{25}=\left(\dfrac{1}{27}\right)^{25}\)
\(\left(\dfrac{1}{5}\right)^{50}=\left[\left(\dfrac{1}{5}\right)^2\right]^{25}\)\(=\left(\dfrac{1}{25}\right)^{25}\)
Do \(\left(\dfrac{1}{27}\right)^{25}< \left(\dfrac{1}{25}\right)^{25}=>\left(\dfrac{1}{3}\right)^{75}< \left(\dfrac{1}{5}\right)^{50}\)
Kiểm tra lại bài nhé, học tốt!!
a: m>n
=>2m>2n
=>2m-2>2n-2
b: m>n
=>-3m<-3n
=>-3m+1<-3n+1
c: m>n
=>2m>2n
=>2m+3>2n+3
mà 2n+3>2n+1
nên 2m+3>2n+1
d: m>n
=>-5m<-5n
=>-5m+3<-5n+3
mà -5n+3<-5n+7
nên -5m+3<-5n+7
A=1+3+3^2+3^3+3^4+3^5+3^6
3A=3+3^2+3^3+3^4+3^5+3^6+3^7
3A-A=(3+3^2+3^3+3^4+3^5+3^6+3^7)-(1+3+3^2+3^3+3^4+3^5+3^6)
A=3^7-1
Vì A =3^7-1 ; B =3^7-1
=> A=B
Sửa đề:
\(A=1+3+3^2+3^3+3^4+3^5+3^6\)
\(3A=3+3^2+...+3^7\)
\(3A-A=\left(3+3^2+3^3+...+3^7\right)-\left(1+3+3^2+...+3^6\right)\)
\(2A=3^7-1\)
\(\Rightarrow A=\frac{3^7-1}{2}< 3^7-1=B\)
Vậy \(A< B\)