K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2018

a ) 

Ta có : 

\(3^{40}=\left(3^4\right)^{10}=81^{10}\)

\(5^{30}=\left(5^3\right)^{10}=125^{10}\)

Do \(125^{10}>81^{10}\)

\(\Rightarrow5^{30}>3^{40}\)

b ) 

Ta có :  \(5^{303}>2^{44}\left(5>2;303>44\right)\)

c ) 

Ta có :   \(5^{303}>2^4\left(5>2;303>4\right)\)

7 tháng 7 2018

a) 340 = (33)10 = 910

530 = ( 53 )10 = 12510

Mà \(9^{10}< 125^{10}\Rightarrow3^{40}< 5^{30}\)

Vậy ....

b) 5303 > 244 ( vì 5 > 2 ; 303 > 44 )

c) 5303 > 24 ( vì 5 > 2 ; 303 > 4 )

7 tháng 7 2018

a) Ta có: \(3^{40}=\left(3^4\right)^{10}=81^{10}\)

              \(5^{30}=\left(5^3\right)^{10}=125^{10}\)

Vì 125 > 81 => \(125^{10}>81^{10}\) => \(3^{40}>5^{30}\)

b) Ta có: \(5^{303}>5^4\) vì 303 > 4

         Mà: \(5^4>2^4\)  vì 5 > 2

=> \(5^{303}>2^4\)

7 tháng 7 2018

a ) Ta có :

530 = ( 53 )10 = 12510 

MÀ 12510 > 310 hay 530 > 310

Vậy 530 > 310

7 tháng 7 2018

b ) TA CÓ :

24 = 16

5303 = 52 . 5301 = 25 . 5301

Mà  25 . 5301 > 16 Do đó 5303 > 24

Vậy 5303 > 24

c ) ( tương tự phần b )

5 tháng 10 2023

Câu 1.9920999910

=(992)10=980110

Vậy 980110<999910 suy ra  9920<999910

Câu 2. 3500và 7300

 3500=(35)100=243100

7300=(73)100=343100

Vậy 243100<343100 => 3500<7300

6 tháng 12 2023

Bạn có thể ghi cho tiết đề bài và bạn muốn làm gì cho bài đó được không?

6 tháng 12 2023

a/

\(2^{1050}=\left(2^2\right)^{525}=4^{525}< 5^{525}< 5^{540}\)

b/

\(2^{161}>2^{160}=\left(2^4\right)^{40}=16^{40}>13^{40}\)

c/

\(17^{14}>16^{14}=\left(2^4\right)^{14}=2^{56}>2^{55}=\left(2^5\right)^{11}=32^{11}>31^{11}\)

5 tháng 10 2017

ko biết đâu nha

5 tháng 10 2017

2711 và 818

Ta có :

2711 = ( 33 )11 = 333

818 = ( 34 )8 = 332

Vì 333 > 332 Nên 2711 > 818

10 tháng 9 2023

a) Ta có:

\(2^{300}=2^{3\cdot100}=\left(2^3\right)^{100}=8^{100}\)

\(3^{200}=3^{2\cdot100}=\left(3^2\right)^{100}=9^{100}\)

Mà: \(8< 9\)

\(\Rightarrow8^{100}< 9^{100}\)

\(\Rightarrow2^{300}< 3^{200}\)

b) Ta có:

\(3^{500}=3^{5\cdot100}=\left(3^5\right)^{100}=243^{100}\)

\(7^{300}=7^{3\cdot100}=\left(7^3\right)^{100}=343^{100}\)

Mà: \(243< 343\)

\(\Rightarrow243^{100}< 343^{100}\)

\(\Rightarrow3^{500}< 7^{300}\)

c) Ta có: 

\(8^5=\left(2^3\right)^5=2^{3\cdot5}=2^{15}=2\cdot2^{15}\)

\(3\cdot4^7=3\cdot\left(2^2\right)^7=3\cdot2^{2\cdot7}=3\cdot2^{14}\)

Mà: \(2< 3\)

\(\Rightarrow2\cdot2^{14}< 3\cdot2^{14}\)

\(\Rightarrow8^5< 3\cdot4^7\)

d) Ta có:

\(202^{303}=202^{3\cdot101}=\left(202^3\right)^{101}=8242408^{101}\)

\(303^{202}=303^{2\cdot101}=\left(303^2\right)^{101}=91809^{101}\)

Mà: \(8242408>91809\)

\(\Rightarrow8242408^{101}>91809^{101}\)

\(\Rightarrow202^{303}>303^{202}\)

26 tháng 8 2021

a)
\(7^{30}=\left(7^3\right)^{10}=343^{10}\)
\(3^{40}=\left(3^4\right)^{10}=81^{10}\)
mà \(343^{10}>81^{10}\)
=>\(7^{30}>3^{40}\)

26 tháng 8 2021

b) 202^303 và 303^202
\(202^{303}=\left(202^3\right)^{100}=8242408^{100}\)
\(302^{202}=\left(302^2\right)^{100}=91204^{100}\)
\(8242408^{100}>91204^{100} \)
202^303 > 303^202