K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2018

\(\frac{2}{2.3}\) +   \(\frac{2}{3.4}\) +  \(\frac{2}{4.5}\) + .......+ \(\frac{2}{x.\left(x+1\right)}\) = \(\frac{2017}{2019}\) 

2 . (  \(\frac{1}{2}\) -  \(\frac{1}{3}\) + \(\frac{1}{3}\) -  \(\frac{1}{4}\) + .......+  \(\frac{1}{x+1}\) ) = \(\frac{2017}{2019}\)

2 . ( \(\frac{1}{2}\) -  \(\frac{1}{x+1}\) ) = \(\frac{2017}{2019}\)

\(\frac{1}{2}\) -  \(\frac{1}{x+1}\) =  \(\frac{2017}{2019}\) : 2 

 \(\frac{1}{2}\) -  \(\frac{1}{x+1}\) = \(\frac{2017}{4038}\)

             \(\frac{1}{x+1}\)  =  \(\frac{1}{2}\)  -    \(\frac{2017}{4038}\)

              \(\frac{1}{x+1}\)  = \(\frac{1}{2019}\) 

     <=> x + 1 = 2019 => x = 2018

vậy x = 2018

1 tháng 7 2018

\(\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{x\left(x+1\right)}=\frac{2017}{2019}\)

\(\Leftrightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2017}{2019}\)

\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2017}{2019}\)

\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2017}{2019}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2017}{4038}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2019}\)

\(\Rightarrow x+1=2019\)

\(\Leftrightarrow x=2018\)

Vậy  \(x=2018\)

11 tháng 7 2018

tui o bít nhưng ai kb vs tui o

29 tháng 6 2018

Ta có 

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2018^2}\)  < \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\)

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2018^2}\)< 1 - \(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2018^2}\)< 1 - \(\frac{1}{2018}\)\(\frac{2017}{2018}\)< 1

Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2018^2}\)< 1 ( dpcm )

29 tháng 6 2018

Ta có:

\(\frac{1}{2^2}\)\(\frac{1}{1.2}\).

\(\frac{1}{3^2}\)\(\frac{1}{2.3}\).

\(\frac{1}{4^2}\)\(\frac{1}{3.4}\).

...

\(\frac{1}{2017^2}\)\(\frac{1}{2016.2017}\).

\(\frac{1}{2018^2}\)\(\frac{1}{2017.2018}\).

Từ trên ta có:

\(\frac{1}{2^2}\)\(\frac{1}{3^2}\)\(\frac{1}{4^2}\)+...+ \(\frac{1}{2017^2}\)\(\frac{1}{2018^2}\)\(\frac{1}{1.2}\)\(\frac{1}{2.3}\)\(\frac{1}{3.4}\)+...+ \(\frac{1}{2016.2017}\)\(\frac{1}{2017.2018}\)= 1- \(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{4}\)+...+ \(\frac{1}{2016}\)\(\frac{1}{2017}\)\(\frac{1}{2017}\)\(\frac{1}{2018}\)= 1- \(\frac{1}{2018}\)< 1.

=> \(\frac{1}{2^2}\)\(\frac{1}{3^2}\)\(\frac{1}{4^2}\)+...+ \(\frac{1}{2017^2}\)\(\frac{1}{2018^2}\)< 1.

=> ĐPCM.

31 tháng 3 2020

a, Ta có : \(\frac{x+1}{2}+\frac{x-2}{4}=1-\frac{2\left(x-1\right)}{3}\)

=> \(\frac{6\left(x+1\right)}{12}+\frac{3\left(x-2\right)}{12}=\frac{12}{12}-\frac{8\left(x-1\right)}{12}\)

=> \(6\left(x+1\right)+3\left(x-2\right)=12-8\left(x-1\right)\)

=> \(6x+6+3x-6=12-8x+8\)

=> \(17x=20\)

=> \(x=\frac{20}{17}\)

b, Ta có : \(\frac{5x-1}{6}+x=\frac{6-x}{4}\)

=> \(\frac{5x-1+6x}{6}=\frac{6-x}{4}\)

=> \(4\left(11x-1\right)=6\left(6-x\right)\)

=> \(44x-4-36+6x=0\)

=> \(\)\(50x=40\)

=> \(x=\frac{4}{5}\)

c, Ta có : \(\frac{5\left(1-2x\right)}{3}+\frac{x}{2}=\frac{3\left(x-5\right)}{4}-2\)

=> \(\frac{20\left(1-2x\right)}{12}+\frac{6x}{12}=\frac{9\left(x-5\right)}{12}-\frac{24}{12}\)

=> \(20\left(1-2x\right)+6x=9\left(x-5\right)-24\)

=> \(20-40x+6x-9x+45+24=0\)

=> \(43x=89\)

=> \(x=\frac{89}{43}\)

7 tháng 5 2017

\(\frac{2}{2.3}\)\(\frac{2}{3.4}\)\(\frac{2}{4.5}\)+........+ \(\frac{2}{x+\left(x+1\right)}\)\(\frac{2008}{2010}\)

= 2 . ( \(\frac{1}{2.3}\)\(\frac{1}{3.4}\)\(\frac{1}{4.5}\)+..........+ \(\frac{1}{x+\left(x+1\right)}\)\(\frac{2008}{2010}\)

= 2 . ( \(\frac{1}{2}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{4}\)\(\frac{1}{4}\)\(\frac{1}{5}\)+.........+ \(\frac{1}{x}\)\(\frac{1}{x+1}\)\(\frac{2008}{2010}\)

= 2 . ( \(\frac{1}{2}\)\(\frac{1}{x+1}\)) = \(\frac{2008}{2010}\)

= ( \(\frac{1}{2}\)\(\frac{1}{x+1}\)) = \(\frac{2008}{2010}\): 2

= ( \(\frac{1}{2}\)\(\frac{1}{x+1}\)) = \(\frac{2008}{2010}\)\(\frac{1}{2}\)

= ( \(\frac{1}{2}\)\(\frac{1}{x+1}\)) = \(\frac{502}{1005}\)

\(\frac{1}{x+1}\)\(\frac{1}{2}\)\(\frac{502}{1005}\)

\(\frac{1}{x+1}\)\(\frac{1}{2010}\)

\(\Rightarrow\)\(x+1\)= 2010

              \(\Leftrightarrow\) \(x\) = 2010 - 1

                   \(\Rightarrow\) \(x\)= 2009

                  Vậy \(x\)= 2009

7 tháng 5 2017

                                     \(\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+.....+\frac{2}{x\left(x+1\right)}=\frac{2008}{2010}\)

                              \(2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.....+\frac{1}{x\left(x+1\right)}\right)=\frac{1004}{1005}\)

\(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{1004}{1005}\)

                                                                                    \(2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{1004}{1005}\)         

                                                                                             \(\frac{1}{2}-\frac{1}{x+1}=\frac{1004}{1005}:2\)       

                                                                                             \(\frac{1}{2}-\frac{1}{x+1}=\frac{502}{1005}\)            

                                                                                                         \(\frac{1}{x+1}=\frac{1}{2}-\frac{502}{1005}\)          

                                                                                                          \(\frac{1}{x+1}=\frac{1}{2010}\)     

\(=>x+1=2010\)  

\(=>x=2009\)            

Vậy \(x=2009\)                    

NV
22 tháng 6 2019

\(x=\frac{1}{2}\frac{\sqrt{\left(\sqrt{2}-1\right)^2}}{\sqrt{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}}=\frac{1}{2}.\left(\sqrt{2}-1\right)\)

\(\Rightarrow2x=\sqrt{2}-1\Rightarrow2x+1=\sqrt{2}\)

\(\Rightarrow4x^2+4x+1=2\Rightarrow4x^2+4x-1=0\)

\(B=\left[x^3\left(4x^2+4x-1\right)-x\left(4x^2+4x-1\right)+4x^2+4x-1-1\right]^{2018}+2018\)

\(=\left(-1\right)^{2018}+2018=2019\)

31 tháng 1 2017

để ý 1+1/x(x+2)=(x2+2x+1)/x(x+2)=(x+1)2/x(x+2)

+ 1+1/1.3=22/1.3 ;......