Cho số thực a, b, c thỏa mãn abc=1. Chứng minh rằng: 1/(1+a) + 1/(1+b) + 1/(1+c) > 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo nguyên lý Dirichlet ta có mệnh đề trong ba số thực bất kì x,y,z luôn tìm được hai số có tích không âm
Áp dụng thì hai trong ba số a-1,b-1,c-1 có tích không âm
Giả sử (a-1)(b-1)≥0=>(c+1)/c=ab+1≥a+b (do abc = 1)
Ta có (ab- 1)²+(a-b)²≥0 (luôn đúng)
Từ đó 1/(1+a)² +1/(1+b)²≥1/(1+ab)=c/(c+1)
Do đó 1/(1+a)² +1/(1+b)² +1/(1+c)² +2/(1+a)(1+b)(1+c)
≥c/(c+1)+1/(c+1)²+2/(1+ab+a+b)(1+c)
=(c²+c+1)/(1+c)²+2/2*[(c+1)/c](c+1)
=(c²+c+1)/(1+c)²+c/(c+1)² =1
Theo nguyên lý Dirichlet ta có mệnh đề trong ba số thực bất kì x,y,z luôn tìm được hai số có tích không âm
Áp dụng thì hai trong ba số a-1,b-1,c-1 có tích không âm
Giả sử (a-1)(b-1)≥0=>(c+1)/c=ab+1≥a+b (do abc = 1)
Ta có (ab- 1)²+(a-b)²≥0 (luôn đúng)
Từ đó 1/(1+a)² +1/(1+b)²≥1/(1+ab)=c/(c+1)
Do đó 1/(1+a)² +1/(1+b)² +1/(1+c)² +2/(1+a)(1+b)(1+c)
≥c/(c+1)+1/(c+1)²+2/(1+ab+a+b)(1+c)
=(c²+c+1)/(1+c)²+2/2*[(c+1)/c](c+1)
=(c²+c+1)/(1+c)²+c/(c+1)² =1
\(\frac{a}{2b+a}+\frac{b}{2c+b}+\frac{c}{2a+c}=\frac{a^2}{2ab+a^2}+\frac{b^2}{2bc+b^2}+\frac{c^2}{2ca+c^2}\)
\(\ge\frac{\left(a+b+c\right)^2}{2ab+a^2+2bc+b^2+2ca+c^2}=\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Đề là
Cho \(a;b;c\ge0\) thỏa mãn a+b+c = 1
Cmr : \(\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}\ge\frac{2}{1+a}+\frac{2}{1+b}+\frac{2}{1+c}\) ak bạn
Ta có:a+b+c=1
\(đpcm\Leftrightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{2}{a+2b+c}+\frac{2}{2a+b+c}+\frac{2}{a+b+2c}\)(*)
Áp dụng BĐT Bunhiacopxki:
\(\frac{1}{a+b}+\frac{1}{b+c}\ge\frac{4}{a+2b+c}\)(1)
Tương tự:\(\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{4}{a+b+2c}\)(2)
\(\frac{1}{a+b}+\frac{1}{c+a}\ge\frac{4}{2a+b+c}\)(3)
Cộng theo từng vế của (1);(2);(3) ta đc:(*)(đpcm)
Dấu ''='' xảy ra\(\Leftrightarrow a=b=c=\frac{1}{3}\)
cho 3 số dương a,b,c thỏa mãn abc = 1 và a+b+c > 1/a + 1/b + 1/. chứng minh rằng (a-1)(b-1)(c-1) > 0
Theo nguyên lý Dirichlet ta có mệnh đề trong ba số thực bất kì x,y,z luôn tìm được hai số có tích không âm
Áp dụng thì hai trong ba số a-1,b-1,c-1 có tích không âm
Giả sử (a-1)(b-1)≥0=>(c+1)/c=ab+1≥a+b (do abc = 1)
Ta có (ab- 1)²+(a-b)²≥0 (luôn đúng)
Từ đó 1/(1+a)² +1/(1+b)²≥1/(1+ab)=c/(c+1)
Do đó 1/(1+a)² +1/(1+b)² +1/(1+c)² +2/(1+a)(1+b)(1+c)
≥c/(c+1)+1/(c+1)²+2/(1+ab+a+b)(1+c)
=(c²+c+1)/(1+c)²+2/2*[(c+1)/c](c+1)
=(c²+c+1)/(1+c)²+c/(c+1)² =1