1.so sánh : 333^444 và 3333^4444 ; 2. Tính giá trị của biểu thức : A = 21^5 tất cả phần 81 . 49 , B= 3^3.(0,5)^5 tất cả phần 1,5^5, C = 2^2. 1/128 . 45 .2 ^-6, D = 6^3+3.6^2+3^3 tất cả phần -13 mong mn giúp đỡ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có 333 < 3333 nên 333^444 < 3333^444 (1)
Lại có 444 < 4444 => 3333^444 < 3333^4444 (2)
Từ (1) và (2) => 333^444 < 3333^4444
\(3333^{4444}=\left(1111\right)^{3.4444}=1111^{13332}\)
\(4444^{3333}=1111^{4.3333}=1111^{13332}\)
Vậy = nhau
Bài này ta làm như sau:
Câu a) ta có 4^222= (2^2)222 = 2^(2.222) = (-2)^444 vậy suy ra 4^(222) = (-2)^444
Câu b) Bài toán yêu cầu ta so sánh: (-3333)^4444 và 4444^3333
Ta có: (-3333)^4444 = (3333)^4444= (3.1111)^(4.1111) =[(3.1111)^4]^1111
Mặt khác ta có: 4444^3333= (4.1111)^(3.1111) =[(4.1111)^3]^1111
Đến đây ta so sánh A=(3.1111)^4 với B= (4.1111)^3
A= (3^4).(1111).(1111)^3
B=(4^3).(1111)^3
Đến đây ta lại so sánh (3^4).1111 với 4^3
Dễ dàng nhận thấy (3^4).1111 > 4^3 =64
Vậy kết luận 3333^4444 > 4444^3333
Bài c) Ta có 4^30 =(4^3)^10= 64 ^10 = (4^10).(2^10).(8^10)
Ta lại có: (3).(24)^10 =(3).(3^10).(8^10)
Đến đây ta lại so sánh:(4^10).(2^10) với (3).(3^10)
Dễ dàng nhận thấy 4^10 > 3^10 và 2^10 >3
Nên suy ra (4^10).(2^10) > (3). (3^10)
vậy 4^30 > (3).(24^10)
tick với đó
\(3333^{4444}=\left(3333^4\right)^{1111}=\left(1111^4.3^4\right)^{1111}\)
\(4444^{3333}=\left(4444^3\right)^{1111}=\left(1111^3.4^3\right)^{1111}\)
Do \(1111^4.3^4>1111^3.4^3\)
\(\Rightarrow\left(1111^4.3^4\right)^{1111}>\left(1111^3.4^3\right)^{1111}\)
\(\Rightarrow3333^{4444}>4444^{3333}\)
33334444=(33334)1111=(34x11114)1111
44443333=(44443)1111=(43x11113)1111
vì 34x11114>43x11113 nên 33334444>44443333
Mik nghĩ là dấu >
Đừng k mình sai nhé !
( Bởi vì mik có thể tính sai )
a 4443333 = 3334444
b 3484 < 4363
c 199010 +19909 > 199110
d 22004 > 5891
e 1031 > 2100
k mik nha bn !!! mình làm nanh nhất !
Bạn Trịnh Quang phần a bn sai rồi. 4443333< 3334444 nha bạn
Ta có :
\(3333^{4444}=3.1111^{4.1111}=\left(3.1111^4\right)^{1111}=3^4\)
\(4444^{3333}=4.1111^{3.1111}=\left(4.1111\right)^{1111}=4^3\)
vì \(3^4=81\)
\(4^3=64\)
\(\Rightarrow3^4>4^3\)
Vậy \(3333^{4444}>4444^{3333}\)
Bài 1:
ta có: 333<3333; 444<4444
=> 333444<33334444
Bài 2:
\(A=\frac{21^5}{81}=\frac{\left(3.7\right)^5}{3^4}=\frac{3^5.7^5}{3^4}=3.7^5=50421\)
\(B=\frac{3^3.\left(0,5\right)^5}{\left(1,5\right)^5}=\frac{3^3.\left(0,5\right)^5}{\left(3.0,5\right)^5}=\frac{3^3.\left(0,5\right)^5}{3^5.\left(0,5\right)^5}=\frac{1}{3^2}=\frac{1}{9}\)
\(C=2^2.\frac{1}{128}.45.2^{-6}=\frac{2^2.45}{128.64}=\frac{2^2.45}{2^7.2^6}=\frac{45}{2^{11}}=\frac{45}{2048}\)
\(D=\frac{6^3+3.6^2+3^3}{-13}=\frac{2^3.3^3+2^2.3^3+3^3}{-13}=\frac{3^3.\left(2^3+2^2+1\right)}{-13}=\frac{3^3.13}{-13}\)\(=3^3.\left(-1\right)=-27\)