Tìm 2 số nguyên dương x y sao cho x + y = 2xy
Đúng mk tick cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x-2xy+y=0\)
\(\Leftrightarrow2x-4xy+2y=0\)
\(\Leftrightarrow2x-4xy+2y-1=0-1\)
\(\Leftrightarrow2x\left(1-2y\right)-\left(1-2y\right)=-1\)
\(\Leftrightarrow\left(2x-1\right)\left(1-2y\right)=-1\)
Suy ra :
\(\hept{\begin{cases}2x-1=1\\1-2y=-1\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)
\(\hept{\begin{cases}2x-1=-1\\1-2y=1\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}}\)
Vậy ....
Ta có: xy-x+y=6
=> x(y-1)+(y-1)=6-1
=> (y-1)(x+1)=5
Vì x, y là số nguyên dương nên x+1 và y-1 là ước dương của 5
Ta có bảng sau
x+1 | 1 | 5 |
x | 0 | 4 |
y-1 | 5 | 1 |
y | 6 | 2 |
Mà x, y là số nguyên dương nên
(x;y)=(4;2)
2\(xy\) + 4\(x\) + y + 2 = 4 + 2
2\(x\).( y + 2) + (y + 2) = 6
(y + 2).(2\(x\) + 1) = 6
Ư(6) = {-6; -3; -2; -1; 1; 2; 3; 6}
Lập bảng ta có:
2\(x+1\) | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |
\(x\) | -\(\dfrac{7}{2}\) | -2 | -\(\dfrac{3}{2}\) | -1 | 0 | \(\dfrac{1}{2}\) | 1 | \(\dfrac{7}{2}\) |
y + 2 | -1 | -2 | -3 | -6 | 6 | 3 | 2 | 1 |
y | -3 | -4 | -5 | -8 | 4 | 1 | 0 | -1 |
Theo bảng trên ta có các cặp (\(x\);y) nguyên thỏa mãn đề bài là:
(\(x\); y) = (-2; -4); (-1; -8); (0; 4); (1; 0)