K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2018

Ta chỉ cần đưa \(4\sqrt{3}=2.\sqrt{a}.\sqrt{b}\) sao cho a+b=7 hoặc a+b=13
a) \(7+4\sqrt{3}=7+2\sqrt{4}.\sqrt{3}=\left(\sqrt{4}\right)^2+2\sqrt{4}.\sqrt{3}+\left(\sqrt{3}\right)^2=\left(\sqrt{4}+\sqrt{3}\right)^2\)
b) \(13-4\sqrt{3}=\left(\sqrt{12}\right)^2-2.\sqrt{12}.1+1^2=\left(\sqrt{12}-1\right)^2\)

15 tháng 6 2018

Cái này mk hk rồi nè

\(7+4\sqrt{3}=4+2.2.\sqrt{3}+3=\left(\sqrt{3}+2\right)^2\)

\(13-4\sqrt{3}=12-2.2.\sqrt{3}+1=12-2.\sqrt{12}+1=\left(\sqrt{12}-1\right)^2\)

k mk nha

16 tháng 7 2017

\(5\sqrt{18}-\sqrt{50}+\sqrt{8}\)

\(=5\sqrt{2.9}-\sqrt{25.2}+\sqrt{2.4}\)

\(=15\sqrt{2}-5\sqrt{2}+2\sqrt{2}\)

\(=12\sqrt{2}\) 

16 tháng 7 2017

\(5\sqrt{18}-\sqrt{50}+\sqrt{8}=9.899494937\)

P/s; Tôi ko chắc đâu mới lớp 5 thôi

9 tháng 8 2017

a)

\(3+2\sqrt{2}=2+2\sqrt{2}+1=\left(\sqrt{2}^2\right)+2\times\sqrt{2}\times1=\left(\sqrt{2}+1\right)^2\)

mấy câu còn lại tương tự

25 tháng 7 2016

\(2A=\frac{4}{3}+\frac{2}{3}+\frac{2}{6}+\frac{2}{12}+\frac{2}{24}+\frac{2}{48}.\)

\(A=2A-A=\frac{4}{3}-\frac{2}{96}=\frac{63}{48}\)

24 tháng 6 2021

a)điều kiện:`(x-2)/(x+3)>=0(x ne -3)`

Trường hợp 1:

\(\begin{cases}x-2 \ge 0\\x+3>0\\\end{cases}\)

`<=>` \(\begin{cases}x \ge 2\\x>-3\\\end{cases}\)

`<=>x>=2`

Trường hợp 2:

\(\begin{cases}x-2 \le 0\\x+3<0\\\end{cases}\)

`<=>` \(\begin{cases}x \le 2\\x<-3\\\end{cases}\)

`<=>x<-3`

Vậy với `x>=2` hoặc `x<=-3` thì biểu thức được xác định

`b)ĐK:(2+x)/(5-x)>=0(x ne 5)`

`<=>(x+2)/(x-5)<=0`

Để `(x+2)/(x-5)<=0` thì tử và mẫu trái dấu mà `x+2>x-5`

`=>` \(\begin{cases}x+2 \ge 0\\x-5<0\\\end{cases}\)

`<=>` \(\begin{cases}x \ge -2\\x<5\\\end{cases}\)

`<=>-2<=x<5`

Vậy với `-2<=x<5` thì ...

24 tháng 6 2021

Cảm ơn 

19 tháng 7 2021

a) \(9+4\sqrt{5}=\left(\sqrt{5}\right)^2+2.\sqrt{5}.2+2^2=\left(\sqrt{5}+2\right)^2\)

b) \(23-8\sqrt{7}=4^2-2.4.\sqrt{7}+\left(\sqrt{7}\right)^2=\left(4-\sqrt{7}\right)^2\)

c) \(4-2\sqrt{3}=\left(\sqrt{3}\right)^2-2.\sqrt{3}.1+1^2=\left(\sqrt{3}-1\right)^2\)

d) \(11+6\sqrt{2}=3^2+2.3.\sqrt{2}+\left(\sqrt{2}\right)^2=\left(3+\sqrt{2}\right)^2\)

a) \(9+4\sqrt{5}=\left(\sqrt{5}+2\right)^2\)

b) \(23-8\sqrt{7}=\left(4-\sqrt{7}\right)^2\)

c) \(4-2\sqrt{3}=\left(\sqrt{3}-1\right)^2\)

d) \(11+6\sqrt{2}=\left(3+\sqrt{2}\right)^2\)

ΔAED vuông tại E nên AE<AD

ΔDFC vuông tại F nên FC<DC

=>AE+FC<AD+DC=AC

11 tháng 7 2021

\(3-\sqrt{8}=3-2\sqrt{2}=\left(\sqrt{2}\right)^2-2.\sqrt{2}.1+1^2=\left(\sqrt{2}-1\right)^2\)

11 tháng 7 2021

3 - \(\sqrt{8}\)

= 3 - 2\(\sqrt{2}\)

= 1 - 2\(\sqrt{2}\) + 2

\(\left(1-\sqrt{2}\right)^2\)

Bạn chỉ cần lam cho trong căn xuất hiện hằng đẵng thức là được

VD:\(\sqrt{2+2\sqrt{2}}=\sqrt{\left(\sqrt{2}\right)^2+2\sqrt{2}+1}=\sqrt{\left(\sqrt{2}+1\right)^2}=\left(\sqrt{2}+1\right)\)

~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~

 ~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~

3 tháng 8 2017

a, \(=\sqrt{\left(2\sqrt{2}\right)^2+2\times2\sqrt{2}\times\sqrt{5}+\left(\sqrt{5}\right)^2}\)

\(=\sqrt{\left(2\sqrt{2}+\sqrt{5}\right)^2}=2\sqrt{2}+\sqrt{5}\)

11 tháng 7 2021

\(9+4\sqrt{5}=2^2+2.2.\sqrt{5}+\left(\sqrt{5}\right)^2=\left(2+\sqrt{5}\right)^2\)

11 tháng 7 2021

undefined