2 người làm chung công việc sau 16h sẽ xong , nếu người thứ nhất làm 1 mình trong 3 giờ và người thứ hai làm một mình trong 6h thì cả hai người làm được 1/4 công việc , tính thời gian mỗi người làm một mình toàn bộ công việc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
24 gio thi xong
bai nay lop 5
tk minh nha
happy new year
Nhưng bài này là giải bài toán bằng cách lập hệ phương trình, không phải giải theo cấp 1
Gọi thời gian để người thứ nhất, người thứ hai làm xong công việc lần lượg là x, y (giờ; x, y \(\in\) N*)
Khi đó trong mỗi giờ người thứ nhất làm được \(\dfrac{1}{x}\) công việc, người thứ hai làm được \(\dfrac{1}{y}\) công việc.
Theo bài ra ta có: \(\left\{{}\begin{matrix}\dfrac{16}{x}+\dfrac{16}{y}=1\\\dfrac{3}{x}+\dfrac{6}{y}=\dfrac{1}{4}\end{matrix}\right.\).
Giải ra ta có \(\dfrac{1}{x}=\dfrac{1}{24};\dfrac{1}{y}=\dfrac{1}{48}\Rightarrow x=24;y=48\) (TMĐK)
Vậy....
Gọi x ( giờ ) là thời gian hoàn thành công việc một mình của người thứ nhất
y ( giờ ) là thời gian hoàn thành công việc một mình của người thứ hai
( x , y > 0 )
Năng suất ⇒thứ nhất là : \(\dfrac{1}{x} \) ( công việc/giờ )
Năng suất người thứ hai là : \(\dfrac{1}{y}\) ( công việc/ giờ )
Vì hai người làm chung một công việc thì sau 16 giờ làm xong nên ta có pt : \(( \dfrac{1}{x} + \dfrac{1}{y} ).16 = 1 \) ⇒ \(\dfrac{16}{x} + \dfrac{16}{y} = 1 \) ( công việc ) (1)
Vì người thứ nhất làm một mình trong 3 giờ và người thứ hai làm một mình trong 6 giờ thì cả hai người làm được 1/4 công việc nên :
\(\dfrac{3}{x} + \dfrac{6}{y} = \dfrac{1}{4}\) ( công việc ) (2)
Từ (1) , (2) => \(\begin{cases} \dfrac{16}{x} + \dfrac{16}{y} = 1\\ \dfrac{3}{x} + \dfrac{6}{y} = \dfrac{1}{4} \end{cases} \) => \(\begin{cases} x = 24 \\ y = 48 \end{cases} \) (n)
Vậy.... ( cách 1 )
Gọi x giờ là thời gian hoàn thành công việc của người thợ thứ nhất khi làm một mình, tương tự y giờ là của người thứ hai (x và y là các số dương)
=> Trong 1 giờ người thứ nhất làm được 1/x công việc
người thứ hai làm được 1/y công việc
=> Trong 1 giờ hai người cùng làm được: 1/x + 1/y = 1/16 (1)
Trong 3 giờ người thứ nhất làm được 3/x công việc
trong 6 giờ người thứ hai làm được 6/y công việc
=> Hai người đã làm: 3/x + 6/y = 25% = 1/4 (2)
Từ (1) và (2) ta có hệ phương trình;
{1/x + 1/y = 1/16
{3/x + 6/y = 1/4
Đặt 1/x = u và 1/y = v ta có:
{u + v = 1/16
{3u + 6v = 1/4
Giải hệ phương trình này ta có:
u = 1/24
v = 1/48
Vì 1/x = u => 1/x = 1/24 => x = 24 (thoả)
Vì 1/y = v => 1/y = 1/48 => y = 48 (thoả)
=> Nếu làm riêng thì người thứ nhất phải làm trong 24 giờ
người thứ hai phải làm trong 48 giờ.
Gọi thời gian người1 và người 2 hoàn thành công việc khi làm một mình lần lượt là a,b
Theo đề, ta có hệ:
1/a+1/b=1/16 và 3/a+6/b=1/2
=>a=-1/24
=>Đề sai rồi bạn
người thứ nhất là 24h còn người thứ hai là 48h nhé bạn!
Gọi x là thời gian hoàn thành xong công việc của người thợ thứ nhất khi làm 1 mình
y là thời gian hoàn thành công việc của người thợ thứ hai khi làm một mình
Trong 1 giờ người thứ nhất làm được là: \(\frac{1}{x}\)( công việc )
Trong 1 giờ người thứ hai làm được là: \(\frac{1}{y}\)( công việc )
Nên trong 1 giờ hai người cùng làm được: \(\frac{1}{x}+\frac{1}{y}=\frac{1}{16}\left(1\right)\)
Trong 3 giờ người thứ nhất làm được: \(\frac{3}{x}\)( công việc )
Trong 6 giờ người thứ hai làm được: \(\frac{6}{y}\)( công việc )
Nên số công việc 2 người đã làm là: \(\frac{3}{x}+\frac{6}{y}=\frac{1}{4}\left(2\right)\)
Từ ( 1 ) và ( 2 ) ta có hệ phương trình như sau:
\(\Rightarrow\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{1}{16}\\\frac{3}{x}+\frac{6}{y}=\frac{1}{4}\end{cases}}\)
Rồi bạn tự giải tiếp nha