Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x giờ là thời gian hoàn thành công việc của người thợ thứ nhất khi làm một mình, tương tự y giờ là của người thứ hai (x và y là các số dương)
=> trong 1 giờ người thứ nhất làm được 1/x công việc
người thứ hai làm được 1/y công việc
=> Trong 1 giờ hai người cùng làm được: 1/x + 1/y = 1/16 (1)
Trong 3 giờ người thứ nhất làm được 3/x công việc
trong 6 giờ người thứ hai làm được 6/y công việc
=> Hai người đã làm: 3/x + 6/y = 25% = 1/4 (2)
Từ (1) và (2) ta có hệ phương trình;
{1/x + 1/y = 1/16
{3/x + 6/y = 1/4
Đặt 1/x = u và 1/y = v ta có:
{u + v = 1/16
{3u + 6v = 1/4
Giải hệ phương trình này ta có:
u = 1/24
v = 1/48
Vì 1/x = u => 1/x = 1/24 => x = 24 (thoả)
Vì 1/y = v => 1/y = 1/48 => y = 48 (thoả)
=> Nếu làm riêng thì người thứ nhất phải làm trong 24 giờ
người thứ hai phải làm trong 48 giờ.
Gọi x giờ là thời gian hoàn thành công việc của người thợ thứ nhất khi làm một mình, tương tự y giờ là của người thứ hai (x và y là các số dương)
=> trong 1 giờ người thứ nhất làm được 1/x công việc
người thứ hai làm được 1/y công việc
=> Trong 1 giờ hai người cùng làm được: 1/x + 1/y = 1/16 (1)
Trong 3 giờ người thứ nhất làm được 3/x công việc
trong 6 giờ người thứ hai làm được 6/y công việc
=> Hai người đã làm: 3/x + 6/y = 25% = 1/4 (2)
Từ (1) và (2) ta có hệ phương trình;
{1/x + 1/y = 1/16
{3/x + 6/y = 1/4
Đặt 1/x = u và 1/y = v ta có:
{u + v = 1/16
{3u + 6v = 1/4
Giải hệ phương trình này ta có:
u = 1/24
v = 1/48
Vì 1/x = u => 1/x = 1/24 => x = 24 (thoả)
Vì 1/y = v => 1/y = 1/48 => y = 48 (thoả)
=> Nếu làm riêng thì người thứ nhất phải làm trong 24 giờ
người thứ hai phải làm trong 48 giờ.
Gọi thời gian làm riêng của người 1 và người 2 lần lượt là a,b
Theo đề, ta có hệ:
1/a+1/b=1/16 và 3/a+6/b=1/4
=>a=24; b=48
Gọi thời gian người thứ nhất làm riêng hoàn thành công việc là x
Gọi thời gian người thứ hai làm riêng hoàn thành công việc là y
ĐK: x,y > 16
Trong 1 giờ người thứ nhất làm được \(\dfrac{1}{x}\) công việc
người thứ hai làm được \(\dfrac{1}{y}\) công việc
cả 2 người cùng làm được \(\dfrac{1}{16}\) công việc
Ta có pt: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{16}\) (1)
Vì người thứ nhất làm 3 giờ, người thứ hai làm 6 giờ thì chỉ hoàn thành được 25% công việc:
Ta có pt: \(\dfrac{3}{x}+\dfrac{6}{y}=\dfrac{25}{100}\Leftrightarrow\dfrac{3}{x}+\dfrac{6}{y}=\dfrac{1}{4}\) (2)
Từ (1) và (2) ta được hpt: \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{16}\\\dfrac{3}{x}+\dfrac{6}{y}=\dfrac{1}{4}\end{matrix}\right.\)
Đặt \(\dfrac{1}{x}=a;\dfrac{1}{y}=b\) ta được:
\(\left\{{}\begin{matrix}a+b=\dfrac{1}{16}\\3a+6b=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{24}\\b=\dfrac{1}{48}\end{matrix}\right.\)
Trả ẩn: \(\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{24}\\\dfrac{1}{y}=\dfrac{1}{48}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=24\\y=48\end{matrix}\right.\) (TMĐK)
Vậy người thứ nhất làm riêng thì hoàn thành công việc trong 24 giờ.
người thứ nhất làm riêng thì hoàn thành công việc trong 48 giờ.
Gọi thời gian làm riêng của 2 người làm xong công việc lần lượt a ; b ( a;b > 0 )
1 giờ người thứ nhất làm được 1/a công việc
1 giờ người thứ 2 làm được 1/b công việc
Theo bài ra ta có hệ phương trình \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{36}\\\dfrac{6}{x}+\dfrac{3}{y}=\dfrac{2}{3}\end{matrix}\right.\)Đặt 1/x = u ; 1/y = v
\(\Leftrightarrow\left\{{}\begin{matrix}u+v=\dfrac{5}{36}\\6u+3v=\dfrac{2}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}u=\dfrac{1}{12}\\v=\dfrac{1}{18}\end{matrix}\right.\)Theo cách đặ x = 12 ; y = 18
Vậy ...
\(4h48h=\dfrac{24}{5}\left(h\right)\)
Gọi thời gian 2 người làm 1 mình xong việc lần lượt là x và y (giờ) (x;y>0)
Trong mỗi giờ hai người lần lượt làm được \(\dfrac{1}{x}\) và \(\dfrac{1}{y}\) phần công việc
Hai người trong 1 giờ làm được: \(\dfrac{1}{x}+\dfrac{1}{y}\) phần công việc
Nên ta có pt: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{24}\)
Người thứ nhất làm 4h và người thứ 2 làm 9h xong việc nên ta có pt: \(\dfrac{4}{x}+\dfrac{9}{y}=1\)
Ta có hệ:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{24}\\\dfrac{4}{x}+\dfrac{9}{y}=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{7}{40}\\\dfrac{1}{y}=\dfrac{1}{30}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{40}{7}\\y=30\end{matrix}\right.\)
Đổi \(4h48'=\dfrac{24}{5}h\)
Gọi x(giờ) là thời gian người thứ nhất hoàn thành công việc khi làm một mình
Gọi y(giờ) là thời gian người thứ hai hoàn thành công việc khi làm một mình
(Điều kiện: \(x>\dfrac{24}{5};y>\dfrac{24}{5}\))
Trong 1 giờ, người thứ nhất làm được: \(\dfrac{1}{x}\)(công việc)
Trong 1 giờ, người thứ hai làm được: \(\dfrac{1}{y}\)(công việc)
Trong 1 giờ, hai người làm được: \(1:\dfrac{24}{5}=1\cdot\dfrac{5}{24}=\dfrac{5}{24}\)(công việc)
Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{24}\)(1)
Vì khi người thứ nhất làm trong 4 giờ và người thứ hai làm trong 9 giờ thì xong công việc nên ta có phương trình:
\(\dfrac{4}{x}+\dfrac{9}{y}=1\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{24}\\\dfrac{4}{x}+\dfrac{9}{y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{x}+\dfrac{4}{y}=\dfrac{5}{6}\\\dfrac{4}{x}+\dfrac{9}{y}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{5}{y}=-\dfrac{1}{6}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{24}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-5\cdot\left(-6\right)}{1}=30\\\dfrac{1}{x}+\dfrac{1}{30}=\dfrac{5}{24}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{5}{24}-\dfrac{1}{30}=\dfrac{7}{40}\\y=30\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{40}{7}\\y=30\end{matrix}\right.\)(thỏa ĐK)
Vậy: Người thứ nhất cần \(\dfrac{40}{7}\) giờ để hoàn thành công việc khi làm một mình
Người thứ hai cần 30 giờ để hoàn thành công việc khi làm một mình
Gọi số ngày người thứ nhất làm một mình xong việc là x
số ngày người thứ nhất làm một mình xong việc là
Hai người cùng làm chung một công việc mất 12h mới xong nên ta có pt
1/x+1/y=1/12 (1)
nếu người thứ nhất làm một mình trong 4h, sau đó người thứ hai tiếp tục làm một mình trong 6h thì 2 người làm được 40%=2/5 công việc nên ta có pt
4/x+6/y=2/5 (2)
từ 1 và 2 ta có hệ
1/x+1/y=1/12
4/x+6/y=2/5
giải hệ ta được
x=20h
y=30h
Gọi thời gian người 1 và người 2 hoàn thành công việc khi làm một mình lần lượt là a,b
Trong 1h, người 1 làm được 1/a(công việc)
Trong 1h, người 2 làm được 1/b(công việc)
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{8}\\\dfrac{2}{a}+\dfrac{1}{b}=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{1}{a}=-\dfrac{1}{8}\\\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{8}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=8\\\dfrac{1}{b}=0\left(loại\right)\end{matrix}\right.\)
=>Không có cặp (a,b) nào thỏa mãn bài toán
Gọi thời gian người1 và người 2 hoàn thành công việc khi làm một mình lần lượt là a,b
Theo đề, ta có hệ:
1/a+1/b=1/16 và 3/a+6/b=1/2
=>a=-1/24
=>Đề sai rồi bạn