Cho tam giác ABC vuoong tại A (AB<AC) phân giác góc B cắt AC tại D. Kẻ DE vuông góc với BC
a) So sánh DE và DB
b) Tia ED cắt tia BA tại F. Chứng minh đường thẳng BD vuông góc với đường thẳng CF
c) Nếu góc ABC=60 độ. Chứng minh tam giác BCF là tam giác đều
a)DE vuông góc vs DC(gt)
=)DE<BD(Quan hệ giữa đường xiên và hình chiếu)
b)Xét tam giác BAD và tam giác BED,có:
BD là cạnh chung
góc ABD= góc EBD(BD là tia phân giác của góc ABE)
góc BAD = góc BED=90 độ
=) tam giác BAD=tam giác BED(g.c.g)
=)BA=BE(Hai cạnh tg ứng) (1)
=)AD=DE(Hai cạnh tg ứng)
Xét tam giác ADF và tam giác EDC,có:
AD=DE(CMT)
góc ADF=góc EDC(Hai góc đối đỉnh)
góc DAF=góc DEC=90 độ
=)tam giác ADF=tam giác EDC(g.c.g)
=)AF=EC(Hai cạnh tg ứng) (2)
Ta có: BF=AB+AF (3)
BC=EB+EC
Từ (1),(2),(3)=)BF=BC
Gọi giao điểm của BD và CF là K.
Xét tam giác BKF và tam giác BKC,có:
BF=BC(cmt)
góc FBK=góc CBK(BD là tia phân giác của góc ABC)
BK là cạnh chung
=)tam giác BKC=tam giác BKF(c.g.c)
=)góc BKC=góc BKF(Hai góc tg ứng)
Mà:góc BKC= góc BKF=180 độ(Hai góc kề bù)
=)góc BKC=góc BKF=180 độ/2=90 độ
=)BK vuông góc CF
Hay:BD vuông góc vs CF.
c)Tam giác BKF=tam giácBKC(c/m câu b)
=)góc BFK=gócBCK(Hai góc tg ứng) (1)
Ta có:góc FBC+góc BFK+góc BCK=180 độ
=)60 độ+góc BFK+góc BCK=180 độ
=)góc BFK= góc BCK=180 độ-60 độ=120 độ (2)
Từ (1) và (2)=)góc BFK=góc BCK=120 độ/2=60 độ
mà góc FBC=60 độ(gt)
=)Tam giác BCF là tam giác đều.