CHO \(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....\frac{1}{2018^2}\)
CMR : A KO LÀ SỐ TỰ NHIÊN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{2018}{3^{2018}}\)(1)
\(\Rightarrow\frac{1}{3}A=\frac{1}{3^2}+\frac{2}{3^3}+\frac{3}{3^4}+...+\frac{2018}{3^{2019}}\)(2)
Lấy (1) trừ (2) theo vế ta có :
\(A-\frac{1}{3}A=\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{2018}{3^{2018}}\right)-\left(\frac{1}{3^2}+\frac{2}{3^3}+\frac{3}{3^4}+...+\frac{2018}{3^{2019}}\right)\)
\(\Rightarrow\frac{2}{3}A=\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2018}}\right)-\frac{2018}{3^{2019}}\)
Đặt B = \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2018}}\)
=> 3B = \(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2017}}\)
Lấy 3B trừ B theo vế ta có :
\(3B-B=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2017}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2018}}\right)\)
=> 2B = \(1-\frac{1}{3^{2018}}\)
=> \(B=\frac{1}{2}-\frac{1}{3^{2018}.2}\)
Khi đó : \(\frac{2}{3}A=\frac{1}{2}-\frac{1}{3^{2018}.2}-\frac{2018}{3^{2019}}\)
\(A=\left(\frac{1}{2}-\frac{1}{3^{2018}.2}-\frac{2018}{3^{2019}}\right):\frac{2}{3}=\frac{3}{4}-\frac{1}{3^{2017}.4}-\frac{1009}{3^{2018}}=\frac{3}{4}-\left(\frac{1}{3^{2017}.\left(3+1\right)}+\frac{1009}{3^{2018}}\right)\)
\(=\frac{3}{4}-\left(\frac{1}{3^{2018}}+\frac{1}{3^{2017}}-\frac{1009}{3^{2018}}\right)=\frac{3}{4}-\left(\frac{1}{3^{2017}}-\frac{336}{3^{2017}}\right)=\frac{3}{4}+\frac{335}{3^{2017}}\)
Vì A > 0 (1)
Mặt khác\(\frac{335}{3^{2017}}< \frac{335}{1340}< \frac{1}{4}\)
=> \(\frac{335}{3^{2017}}< \frac{1}{4}\Rightarrow\frac{3}{4}+\frac{335}{3^{2017}}< \frac{1}{4}+\frac{3}{4}\Rightarrow A< 1\)(2)
Từ (1) và (2) => 0 < A < 1
=> A không phải là số nguyên
+\(A>1\)
Ta có :\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{2018^2}+\frac{1}{2019^2}>1\) 1
+\(A< 2\)
Ta có:\(1=1\)
\(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
...........................
\(\frac{1}{2019^2}< \frac{1}{2018.2019}\)
\(\Rightarrow A< 1+1-\frac{1}{2019}=2-\frac{1}{2019}< 2\)2
Từ 1 và 2 => A không là số tự nhiên
Ta có A>1
\(A< 1+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+....+\frac{1}{\left(n-1\right)\cdot n}\)
\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(=2-\frac{1}{n}< 2\)
=> 1<A<2 => A không là số tự nhiên
Dễ CM :
\(1< A< 2\)
mệt !
mik đăng lên bởi mik ko biết làm
bn nói vậy mình ko hỉu
làm giúp mik ik
mik đag cần bài này để ôn thi !