Với a,b là các số nguyên dương sao cho a+1 và b+2019 chia hết cho 6. Chứng minh \(\frac{1}{6}\left(10^n+a+b\right)\)là số tự nhiên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì a + 1 và b + 2009 chia hết cho 6 nên a + b + 2010 chia hết cho 6.
Mà 2010 chia hết cho 6 nên a + b chia hết cho 6.
4a không chia hết cho 6 nên 4a + a + b không chia hết cho 6.
Bạn xem lại đề.
Ta có: \(b+2019=\left(b+3\right)+2016\)(*)
Mà \(2016⋮6\)kết hợp với \(\left(^∗\right)⋮6\Rightarrow b+3⋮6\)
Lại có: a + 1 chia hết cho 6 nên \(\left(a+1\right)+\left(b+3\right)⋮6\)
\(\Rightarrow a+b+4⋮6\)
\(\Rightarrow a+b+4^a+\left(4-4^a\right)⋮6\)(1)
Xét a + 1 chia hết cho 6 nên a chia 6 dư 5.Đặt a = 6k + 5
\(\Rightarrow4-4^a=4-4^{6k+5}=4\left(1-4^{6k+4}\right)\)
Ta có:\(4\left(1-4^{6k+4}\right)⋮2\)
Mặt khác: \(1\text{≡}4\left(mod3\right)\)và \(4^{6k+4}\text{≡}4\left(mod3\right)\)
\(\Rightarrow\left(1-4^{6k+4}\right)⋮3\)
Lúc đó \(4\left(1-4^{6k+4}\right)⋮6\)(vì (2,3)=1) (2)
Từ (1) và (2) suy ra \(a+b+4^a⋮6\left(đpcm\right)\)
1.
$4-n\vdots n+1$
$\Rightarrow 5-(n+1)\vdots n+1$
$\Rightarrow 5\vdots n+1$
$\Rightarrow n+1\in \left\{1; 5\right\}$
$\Rightarrow n\in \left\{0; 4\right\}$
2.
Nếu $n$ chẵn $\Rightarrow n+6$ chẵn.
$\Rightarrow (n+3)(n+6)$ chẵn $\Rightarrow (n+3)(n+6)\vdots 2$
Nếu $n$ lẻ $\Rightarrow n+3$ chẵn.
$\Rightarrow (n+3)(n+6)$ chẵn $\Rightarrow (n+3)(n+6)\vdots 2$
Đặt A = \(\frac{1}{6}\left(10^n+a+b\right)=\frac{1}{6}\left(10^n-2020+a+1+b+2019\right)\)
Vì \(\hept{\begin{cases}a+1⋮6\\b+2019⋮6\end{cases}\Rightarrow a+1+b+2019⋮6\Rightarrow\frac{1}{6}\left(a+1+b+2019\right)\inℕ}\)(1)
Để \(A\inℕ\Rightarrow10^n-2020⋮6\)
Nhận thấy 10n = (4 + 6)n = 4 +B(6)
=> 10n chia 6 dư 4
mà 2020 chia 6 dư 4
=> 10n - 2020 \(⋮\)6
=> \(\frac{1}{6}\left(10^n-2020\right)\inℕ\)(2)
Từ (1) và (2) => A \(\inℕ\)