Cho tam giác ABC cân tại A. Trên AB lấy điểm D, qua D vẽ đường thẳng song song với BC cắt AC tại E. CMR:
a, \(BD>\dfrac{1}{2}\left(BC-DE\right)\)
b, \(BE>\dfrac{1}{2}\left(BC+DE\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Trên tia đối của $DE$ lấy $K$ sao cho \(DK=BC\)
Xét tam giác $KDB$ và $CBD$ có:
\(\widehat{KDB}=\widehat{CBD}\) (so le trong)
\(KD=CB\)
$BD$ chung
Do đó \(\triangle KDB=\triangle CBD(c.g.c)\Rightarrow KB=CD(1)\)
\(DE\parallel BC\) nên theo định lý Ta-let: \(\frac{DB}{EC}=\frac{AB}{AC}=1\) (do ABC cân)
\(\Rightarrow DB=EC\)
Xét tam giac $DBC$ và $ECB$ có:
\(BC\) chung
\(\widehat{DBC}=\widehat{ECB}\)
\(DB=EC\)
\(\Rightarrow \triangle DBC=\triangle ECB(c.g.c)\Rightarrow DC=EB(2)\)
Từ \((1);(2)\Rightarrow 2BE=BE+CD=BE+KB> KE\) theo BĐT tam giác
\(\Rightarrow 2BE> KD+DE\Rightarrow 2BE> BC+DE\Rightarrow BE> \frac{1}{2}(DE+BC)\)
Ta có đpcm.
1: Xét ΔABC có DE//BC
nên AE/AC=AD/AB
=>AE/8=1/3
=>AE=8/3(cm)
2:
Xét ΔABC có DE//BC
nên DE/BC=AD/AB
=>DE/10=1/3
=>DE=10/3(cm)
Xét tứ giác BDEF có
BD//EF
BF//DE
Do đó: BDEF là hình bình hành
=>BF=DE=10/3(cm)
3:
AD/AB=1/3
AE/AC=1/3
DE/BC=1/3
Do đó: AD/AB=AE/AC=DE/BC
Bài này đáng lẽ phải là TRÊN TIA ĐỐI CA LẤY E SAO CHO BD=CE. Quên vẽ điểm F mà câu a) dễ nên tự thêm vô nha.
a) Ta có ^BFD = ^ACB ( DF // AC, đồng vị)
Mà ^ABC = ^ACB ( tam giác ABC cân tại A)
=> ^ABC = ^BFD
Vậy tam giác FBD cân tại D (đpcm)
b) Kẻ \(DM\perp BC;EN\perp BC\)
Ta thấy ngay: \(\Delta BDM=\Delta CEN\left(ch-gn\right)\)
=> MD = NE (hai cạnh tương ứng)
=> \(\Delta DMI=\Delta ENI\left(g.c.g\right)\)
=> DI = EI hay I là trung điểm của DE (đpcm)
c) Ta có: AD + AE = AB - BD + AC + CE = AB + AC = 2AB (không đổi)
=> đpcm...
Đề bị sai em kiểm tra lại đề đi! Chỗ trên AB lấy D , trên tia đối AC lấy E sao cho BD = CE ấy.