K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2022

Ta có:

DE // AB (gt).

=> Góc B = Góc DEC (2 góc ở vị trí đồng vị).

Mà Góc B = Góc C (Tam giác ABC cân tại A).

=> Góc DEC = Góc C.

=> Tam DEC là tam giác cân tại D.

25 tháng 1 2022

Xét tam giác \(ABC\) :

- Tam giác \(ABC\) cân tại \(A\) có \(DE\text{/ / }AB\)

\(\Rightarrow\) Góc \(A=CDE\) và góc \(B=CED\)

Mà góc \(A=B\)( tam giác \(ABC\) cân tại \(A\) )

- Góc \(CDE=CED\)

\(CDE\) cân tại C 

undefined

a: Ta có: ΔABC cân tại A

mà AD là đường cao

nên D là trung điểm của BC

hay DB=DC

c: Xét ΔKDC có \(\widehat{KDC}=\widehat{KCD}\left(=\widehat{B}\right)\)

nên ΔKDC cân tại K

16 tháng 3 2022

Còn câu b nữa bạn 🙂

AH
Akai Haruma
Giáo viên
4 tháng 10 2018

Lời giải:

Trên tia đối của $DE$ lấy $K$ sao cho \(DK=BC\)

Xét tam giác $KDB$ và $CBD$ có:

\(\widehat{KDB}=\widehat{CBD}\) (so le trong)

\(KD=CB\)

$BD$ chung

Do đó \(\triangle KDB=\triangle CBD(c.g.c)\Rightarrow KB=CD(1)\)

\(DE\parallel BC\) nên theo định lý Ta-let: \(\frac{DB}{EC}=\frac{AB}{AC}=1\) (do ABC cân)

\(\Rightarrow DB=EC\)

Xét tam giac $DBC$ và $ECB$ có:

\(BC\) chung

\(\widehat{DBC}=\widehat{ECB}\)

\(DB=EC\)

\(\Rightarrow \triangle DBC=\triangle ECB(c.g.c)\Rightarrow DC=EB(2)\)

Từ \((1);(2)\Rightarrow 2BE=BE+CD=BE+KB> KE\) theo BĐT tam giác

\(\Rightarrow 2BE> KD+DE\Rightarrow 2BE> BC+DE\Rightarrow BE> \frac{1}{2}(DE+BC)\)

Ta có đpcm.

AH
Akai Haruma
Giáo viên
4 tháng 10 2018

Hình vẽ:

Chương III : Quan hệ giữa các yếu tố trong tam giác, các đường đồng quy của tam giác

20 tháng 12 2021

bạn nào giúp mình với gấp lắm rồi =((

20 tháng 12 2021

Câu C) CF=2BD nha