K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2018

\(\frac{5}{11}+3\frac{8}{21}+\frac{6}{11}-\frac{8}{21}\)

\(=\frac{5}{11}+\frac{71}{21}+\frac{6}{11}-\frac{8}{21}\)

\(=\left(\frac{5}{11}+\frac{6}{11}\right)+\left(\frac{71}{21}-\frac{8}{21}\right)\)

\(=1+3\)

\(=4\)

Đúng lun, Mn tk mk nha!

26 tháng 4 2018

\(\frac{5}{11}+3\frac{8}{21}+\frac{6}{11}-\frac{8}{21}\)

=\(\frac{5}{11}+\frac{71}{21}+\frac{6}{11}-\frac{8}{21}\)

=\(\left(\frac{5}{11}+\frac{6}{11}\right)+\left(\frac{71}{21}-\frac{8}{21}\right)\)

=\(1+3\)

=

10 tháng 3 2019

\(a,=\left(-\frac{3}{7}+\frac{3}{7}\right)+\frac{5}{13}=0+\frac{5}{13}=\frac{5}{13}\)

\(b,=-\frac{5}{21}+\left(-\frac{2}{21}\right)+\frac{8}{24}=-\frac{1}{3}+\frac{1}{3}=0\)

\(c,=\left[-\frac{6}{11}+\frac{\left(-5\right)}{11}\right]+2=-1+2=1\)

\(d,=\frac{-1+\left(-15\right)}{32}+\frac{1}{2}=-\frac{1}{2}+\frac{1}{2}=0\)

10 tháng 3 2019

a) \(\frac{-3}{7}+\frac{5}{13}+\frac{3}{7}\)

\(=\left(\frac{-3}{7}+\frac{3}{7}\right)+\frac{5}{13}\)

\(=0+\frac{5}{13}=\frac{5}{13}\)

b) \(\frac{-5}{21}+\frac{-2}{21}+\frac{8}{24}\)

\(=\frac{-7}{21}+\frac{1}{3}\)

\(=\frac{-1}{3}+\frac{1}{3}=0\)

c) \(\frac{-5}{11}+\left(\frac{-6}{11}+2\right)\)

\(=\frac{-5}{11}+\frac{-6}{11}+2\)

\(=\left(-1\right)+2=1\)

d) \(\left(\frac{-1}{32}+\frac{1}{2}\right)+\frac{-15}{32}\)

\(=\frac{-1}{32}+\frac{1}{2}+\frac{-15}{32}\)

\(=\left(\frac{-1}{32}+\frac{-15}{32}\right)+\frac{1}{2}\)

\(=\frac{-16}{32}+\frac{1}{2}\)

\(=\frac{-1}{2}+\frac{1}{2}=0\)

22 tháng 6 2018

Đặt \(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{435}\)

\(\Rightarrow A=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{870}\)

\(\Rightarrow A=2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{29.30}\right)\)

\(\Rightarrow A=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{29}-\frac{1}{30}\right)\)

\(\Rightarrow A=2\left(\frac{1}{2}-\frac{1}{30}\right)\)

\(\Rightarrow A=1-\frac{1}{15}\)

\(\Rightarrow A=\frac{14}{15}\)

22 tháng 6 2018
khó quá mình ko bít
17 tháng 1 2020

b) \(\frac{\frac{2}{3}+\frac{5}{7}+\frac{4}{21}}{\frac{5}{6}+\frac{11}{7}-\frac{7}{21}}\)

\(=\frac{\frac{29}{21}+\frac{4}{21}}{\frac{101}{42}-\frac{7}{21}}\)

\(=\frac{\frac{11}{7}}{\frac{29}{14}}\)

\(=\frac{22}{29}.\)

Chúc bạn học tốt!

7 tháng 4 2019

\(A=21\frac{4}{11}-\left(1\frac{3}{5}+7\frac{4}{11}\right)\)

\(A=\frac{235}{11}-\left(\frac{8}{5}+\frac{81}{11}\right)\)

\(A=\left(\frac{235}{11}-\frac{81}{11}\right)+\frac{8}{5}\)

\(A=\frac{154}{11}+\frac{8}{5}\)

\(\Rightarrow A=\frac{78}{5}\)

7 tháng 4 2019

\(B=\left(7\frac{8}{9}+2\frac{3}{13}\right)-\left(4\frac{8}{9}-7\frac{10}{13}\right)\)

\(B=\left(\frac{71}{9}+\frac{29}{13}\right)-\left(\frac{44}{9}-\frac{101}{13}\right)\)

\(B=\left(\frac{71}{9}-\frac{44}{9}\right)+\left(\frac{29}{13}-\frac{101}{13}\right)\)

\(B=\frac{27}{9}+\frac{-72}{13}\)

\(B=3+\frac{-72}{13}\)

\(\Rightarrow B=\frac{-33}{13}\)

P/s: Hoq chắc :v

AH
Akai Haruma
Giáo viên
9 tháng 6 2024

Lời giải:

\(y=\frac{\frac{50}{11}.\frac{107}{9}+\frac{64}{13}.\frac{5}{17}}{\frac{5569}{45}.\frac{8}{169}}=\frac{1214030}{21879}:\frac{44552}{7605}=\frac{39455975}{4165612}\)

22 tháng 2 2018

\(\frac{\left(\frac{5}{8}+\frac{5}{27}-\frac{5}{49}\right)\cdot8\cdot27\cdot49}{\left(\frac{11}{8}+\frac{11}{27}-\frac{11}{49}\right)\cdot8\cdot27\cdot49}+\frac{6}{11}\)

\(=\frac{8+27-49}{8+27-49}+\frac{6}{11}\)

\(=1+\frac{6}{11}\)

\(=\frac{11}{11}+\frac{6}{11}=\frac{17}{11}\)

22 tháng 2 2018

\(\frac{\frac{5}{8}+\frac{5}{27}-\frac{5}{49}}{\frac{11}{8}+\frac{11}{27}-\frac{11}{49}}+\frac{6}{11}\)

\(=\frac{5\left(\frac{1}{8}+\frac{1}{27}-\frac{1}{49}\right)}{11\left(\frac{1}{8}+\frac{1}{27}-\frac{1}{49}\right)}+\frac{6}{11}\)

\(=\frac{5}{11}+\frac{6}{11}=\frac{11}{11}=1\)

23 tháng 9 2016

bai de the ma cung hoi

26 tháng 8 2016

\(\left(\frac{-1}{4}+\frac{7}{33}-\frac{5}{3}\right)-\left(\frac{-5}{4}+\frac{6}{11}-\frac{48}{49}\right)=\left(\frac{-1}{4}-\frac{16}{11}\right)-\left(-\frac{31}{44}-\frac{48}{49}\right)=-\frac{1}{4}-\frac{16}{11}+\frac{31}{44}+\frac{48}{49}=-\frac{1}{49}\)