Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) \(\frac{\frac{-6}{5}+\frac{6}{19}-\frac{6}{23}}{\frac{9}{5}-\frac{9}{19}+\frac{9}{23}}=\frac{\left(-6\right).\left(\frac{1}{5}-\frac{1}{19}+\frac{1}{23}\right)}{9.\left(\frac{1}{5}-\frac{1}{19}+\frac{1}{23}\right)}=\frac{-6}{9}=\frac{-2}{3}\)
d) \(\frac{\frac{2}{3}-\frac{2}{5}-\frac{2}{7}+\frac{2}{11}}{\frac{13}{3}-\frac{13}{5}-\frac{13}{7}+\frac{13}{11}}=\frac{2\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}+\frac{1}{11}\right)}{13\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}+\frac{1}{11}\right)}=\frac{2}{13}\)
Làm tiếp:
\(=\left(1+\frac{1}{2}+.....+\frac{1}{2017}\right)-\left(1+\frac{1}{2}+....+\frac{1}{1008}\right)\)
\(=\frac{1}{1009}+\frac{1}{1010}+.........+\frac{1}{2017}\)
\(\Rightarrow\frac{\frac{1}{1009}+....+\frac{1}{2017}}{1-\frac{1}{2}+.....+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2017}}=1\)
Bài 2:
Đặt \(A=\frac{1}{2^2}+.......+\frac{1}{2^{800}}\)
\(4A=1+\frac{1}{2^2}+.....+\frac{1}{2^{798}}\)
\(\Rightarrow4A-A=1-\frac{1}{2^{800}}\)
\(\Rightarrow3A=1-\frac{1}{2^{800}}< 1\Rightarrow A< \frac{1}{3}\)
Vậy \(\frac{1}{2^2}+\frac{1}{2^4}+........+\frac{1}{2^{800}}< \frac{1}{3}\)
Bài 1:Tính
a, Xét biểu thức \(\frac{\left(1+\frac{n}{1}\right)\left(1+\frac{n}{2}\right).........\left(1+\frac{n}{n+2}\right)}{\left(1+\frac{n+2}{1}\right)\left(1+\frac{n+2}{2}\right)..........\left(1+\frac{n+2}{n}\right)}\) với\(n\in N\)
Ta có:\(\frac{\left(1+\frac{n}{1}\right)\left(1+\frac{n}{2}\right).......\left(1+\frac{n}{n+2}\right)}{\left(1+\frac{n+2}{1}\right)\left(1+\frac{n+2}{2}\right)......\left(1+\frac{n+2}{n}\right)}\)
\(=\frac{\frac{n+1}{1}.\frac{n+2}{2}........\frac{2n+2}{n+2}}{\frac{n+3}{1}.\frac{n+4}{2}.........\frac{2n+2}{n}}\)
\(=\frac{\frac{\left(n+1\right)\left(n+2\right).......\left(2n+2\right)}{1.2.3.........\left(n+2\right)}}{\frac{\left(n+3\right)\left(n+4\right)........\left(2n+2\right)}{1.2.3.........n}}\)
\(=\frac{\left(n+1\right)\left(n+2\right).......\left(2n+2\right).1.2.3.......n}{\left(n+3\right)\left(n+4\right)........\left(2n+2\right).1.2.3......\left(n+2\right)}\)
\(=\frac{\left(n+1\right)\left(n+2\right)}{\left(n+1\right)\left(n+2\right)}=1\)
Áp dụng vào bài toán ta có đáp số là:1
b, \(\frac{\frac{-6}{5}+\frac{6}{19}-\frac{6}{23}}{\frac{9}{5}-\frac{9}{19}+\frac{9}{23}}=\frac{\left(-6\right).\left(\frac{1}{5}-\frac{1}{19}+\frac{1}{23}\right)}{9.\left(\frac{1}{5}-\frac{1}{19}+\frac{1}{23}\right)}=\frac{-6}{9}=-\frac{2}{3}\)
c,\(\frac{\frac{1}{6}-\frac{1}{39}+\frac{1}{51}}{\frac{1}{8}-\frac{1}{52}+\frac{1}{68}}=\frac{\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{13}+\frac{1}{17}\right)}{\frac{1}{4}.\left(\frac{1}{2}-\frac{1}{13}+\frac{1}{17}\right)}=\frac{\frac{1}{3}}{\frac{1}{4}}=12\)
d,\(\frac{\frac{2}{3}-\frac{2}{5}-\frac{2}{7}}{\frac{13}{3}-\frac{13}{5}-\frac{13}{7}}=\frac{2\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}\right)}{13\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}\right)}=\frac{2}{13}\)
e,Xét mẫu số ta có:
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+..........+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2017}\)
\(=1+\frac{1}{2}-2.\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-2.\frac{1}{4}+.....+\frac{1}{2015}+\frac{1}{2016}-2.\frac{1}{2016}+\frac{1}{2017}\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+.......+\frac{1}{2017}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+.........+\frac{1}{2016}\right)\)
a, 6/7 + (2/11 - 6/7) - (13/11 + 1)
= 6/7 + 2/11 - 6/7 - 13/11 - 1
= (6/7 - 6/7) - (13/11 - 2/11) - 1
= 0 - 1 - 1
= -2
a) \(\frac{17}{9}-\frac{17}{9}:\left(\frac{7}{3}+\frac{1}{2}\right)\)
= \(\frac{17}{9}-\frac{17}{9}:\frac{17}{6}\)
= \(\frac{17}{9}-\frac{2}{3}\)
= \(\frac{11}{9}\)
b) \(\frac{4}{3}.\frac{2}{5}-\frac{3}{4}.\frac{2}{5}\)
= \(\frac{2}{5}.\left(\frac{4}{3}-\frac{3}{4}\right)\)
= \(\frac{2}{5}.\frac{7}{12}\)
= \(\frac{7}{30}\)
Mình lười làm quá, hay mình nói kết quả cho bn thôi nha
c) -6
d) 3
e) 3
g) 12
h) \(\frac{23}{18}\)
i) \(\frac{-69}{20}\)
k) \(\frac{-1}{2}\)
l) \(\frac{49}{5}\)
a) \(1\frac{3}{19}+\frac{8}{21}-\frac{3}{19}+0.5+\frac{13}{21}\)
\(=\left(1\frac{3}{19}-\frac{3}{19}\right)+\left(\frac{8}{21}+\frac{13}{21}\right)+0.5\)
\(=1+1+0.5=2.5\)
b) \(\left(-\frac{3}{4}+\frac{2}{7}\right):\frac{3}{7}+\left(\frac{5}{7}+\frac{-1}{4}\right):\frac{3}{7}\)
\(=\left(\frac{-3}{4}+\frac{2}{7}+\frac{5}{7}+\frac{-1}{4}\right):\frac{3}{7}\)
\(=0:\frac{3}{7}=0\)
a)|-10|:(-2):(-5)+(-3)2
=1+9
=10
b)1+(-2)+3+(-4)+5+(-6)+...+21+(-22)
=[1+(-2)]+[3+(-4)]+[5+(-6)]+...+[21+(-22]
=(-1)+(-1)+(-1)+...+(-1)
Mà từ 1 đến 22 có:(22-1):1+1:2=11(cặp)
Suy ra:1+(-2)+3+(-4)+5+(-6)+...+21+(-22)=(-11)
c)\(\frac{3}{4}.\frac{5}{9}+\frac{3}{4}.\frac{4}{9}\)
\(=\frac{3}{4}.\left(\frac{5}{9}+\frac{4}{9}\right)\)
\(=\frac{3}{4}\)
d)\(-\frac{4}{17}+\frac{5}{19}+-\frac{13}{17}+\frac{14}{19}+\frac{3}{115}\)
\(=\left[\left(-\frac{4}{17}\right)+\left(-\frac{13}{17}\right)\right]+\left(\frac{5}{19}+\frac{4}{19}\right)+\frac{3}{115}\)
\(=\left(-\frac{27}{17}\right)+1+\frac{3}{115}\)
\(=-\frac{1099}{1955}\)
e)\(\left(\frac{3}{4}+-\frac{7}{2}\right).\left(\frac{10}{11}+\frac{2}{22}\right)\)
\(=\left(\frac{3}{4}-\frac{14}{4}\right).\left(\frac{20}{22}+\frac{2}{22}\right)\)
\(=\left(-\frac{11}{4}\right).\left(\frac{22}{22}\right)\)
\(=-\frac{11}{4}\)
Đặt \(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{435}\)
\(\Rightarrow A=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{870}\)
\(\Rightarrow A=2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{29.30}\right)\)
\(\Rightarrow A=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{29}-\frac{1}{30}\right)\)
\(\Rightarrow A=2\left(\frac{1}{2}-\frac{1}{30}\right)\)
\(\Rightarrow A=1-\frac{1}{15}\)
\(\Rightarrow A=\frac{14}{15}\)