2. Cạnh huyền của 1 tam giác vuông = 26cm . Độ dài của các cạnh góc vuông tỉ lệ với các số 2 và 3 . Tính các cạnh góc vuông. ( có vẽ hình )
3. CMR các tam giác mà có số đo của các cạnh tỉ lệ với các số 3,4,5 thì tam giác đó vuông
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi độ dài các cạnh góc vuông lần lượt là x ; y x , y > 0
Theo định lí Py – ta – go ta có: x 2 + y 2 = 26 2 ⇔ x 2 + y 2 = 676
Theo bài ra ta có: x 5 = y 12 ⇒ x 2 25 = y 2 144 = x 2 + y 2 25 + 144 = 676 169 = 4
Khi đó ta có: x 2 = 25.4 y 2 = 144.4 ⇒ x = 10 c m y = 24 c m
Chọn đáp án B.
Gọi AB(cm),AC là hai cạnh góc vuông, BC(cm) là cạnh huyền(Điều kiện: AB>0; AC>0)
Theo đề, ta có: AB:AC=3:4 và BC=45(cm)
\(\Leftrightarrow\dfrac{AB}{3}=\dfrac{AC}{4}\)
hay \(AB=\dfrac{3}{4}\cdot AC\)
Áp dụng định lí Pytago, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow\left(\dfrac{3}{4}\cdot AC\right)^2+AC^2=45^2\)
\(\Leftrightarrow\dfrac{9}{16}\cdot AC^2+AC^2=45^2=2025\)
\(\Leftrightarrow AC^2\cdot\dfrac{25}{16}=2025\)
\(\Leftrightarrow AC^2=2025:\dfrac{25}{16}=2025\cdot\dfrac{16}{25}=1296\)
hay AC=36(Thỏa ĐK)
Ta có: \(AB=\dfrac{3}{4}\cdot AC\)(cmt)
mà AC=36cm(cmt)
nên \(AB=\dfrac{3}{4}\cdot36=27\left(nhận\right)\)
Vậy: Độ dài hai cạnh góc vuông là 27cm; 36cm
Theo bài ra ta có: Độ dài các cạnh góc vuông tỉ lệ với 3 và 4. Nên ta có:
\(\frac{AB}{3}=\frac{AC}{4}\) \(\Rightarrow\left(\frac{AB}{3}\right)^2=\left(\frac{AC}{4}\right)^2\) \(\Rightarrow\frac{AB^2}{9}=\frac{AC^2}{16}\)
Theo định lí Py-ta-go, tam giác vuông ABC có cạnh huyền BC \(\Rightarrow AB^2+AC^2=BC^2=4^2=16\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta được:
\(\frac{AB^2}{9}=\frac{AC^2}{16}=\frac{AB^2+AC^2}{9+16}=\frac{16}{25}\)
\(\Rightarrow\frac{AB^2}{9}=\frac{16}{25}\Rightarrow AB^2=5,76\Rightarrow AB=2,4\left(cm\right)\)
\(\frac{AC^2}{16}=\frac{16}{25}\Rightarrow AC^2=10,24\Rightarrow AC=3,2\left(cm\right)\)
Vậy AB = 2,4 cm
AC = 3,2 cm
BC = 4 cm
a: Đặt \(\dfrac{AB}{5}=\dfrac{AC}{12}=k\)
=>AB=5k; AC=12k
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(25k^2+144k^2=26^2\)
=>\(k^2=4\)
=>k=2
=>AB=10cm; AC=24cm
b: Xét tứ giác ABCD có
\(\widehat{A}+\widehat{B}+\widehat{BCD}+\widehat{ADC}=360^0\)
=>\(\widehat{BCD}+\widehat{ADC}=360^0-70^0=290^0\)
=>\(2\cdot\left(\widehat{ODC}+\widehat{OCD}\right)=290^0\)
=>\(\widehat{OCD}+\widehat{ODC}=145^0\)
Xét ΔOCD có \(\widehat{COD}+\widehat{OCD}+\widehat{ODC}=180^0\)
=>\(\widehat{COD}=180^0-145^0=35^0\)