Cho tam giác ABC câb tại A có AB=5cm, BC=8cm. Hai đường trung tuyến AM,BN của tam giác ABC cắt nhau tại G. Tính AG
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A)+ △ABC△ABC vuông ở A nên theo định lí Pytago ta có:
AB2+AC2=BC2
AB2+AC2=BC2
Hay: 52+AC2=132
⟹AC=1252+AC2=132
⟹AC=12
+ E là trung điểm của AB nên :AE=EB=AB2=52=2,5AE=EB=AB2=52=2,5
+ N là trung điểm của AC nên :AN=CN=AC2=122=6AN=CN=AC2=122=6
+ △AEC△AEC vuông ở A nên theo định lí Pytago ta có:
EC2=AE2+AC2=2,52+122=150,25
⟹EC≈12.3EC2=AE2+AC2=2,52+122=150,25
⟹EC≈12.3
+ △ANB△ANB vuông ở A nên theo định lí Pytago ta có:
NB2=AB2+AN2=62+52=61
⟹BN≈7,8NB2=AB2+AN2=62+52=61
⟹BN≈7,8
+ Trong tam giác vuông, trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền nên
AM=BC2=6,5AM=BC2=6,5
b) Ta có: Sabc là
( AB*AC ) / 2
mà AB = 5cm ( GT ) , AC = 12 cm ( câu a)
suy ra ( 5*12 ) / 2 = 30 ( cm2 )
Tương tự ta có Seac là 15 cm2
Sbeo = Sabc - Seac =30 - 15 = 15 cm2
Lại có Sboc = 2/3 Sbe
Suy ra Sboc = 2/3 * 15 = 10 (cm2 )
Vậy diện tích tam giác BOC là 10 cm
a, + △ABC△ABC vuông ở A nên theo định lí Pytago ta có: AB2+AC2=BC2
Hay: 52+AC2=132⟹AC=1252+AC2=132⟹AC=12
+ E là trung điểm của AB nên AE=EB=AB2=52=2,5
+ N là trung điểm của AC nên AN=CN=AC2=122=6
+ △AEC△AEC vuông ở A nên theo định lí Pytago ta có: EC2=AE2+AC2=2,52+122=150,25⟹EC≈12.3
+ △ANB△ANB vuông ở A nên theo định lí Pytago ta có: NB2=AB2+AN2=62+52=61⟹BN≈7,8
+ Trong tam giác vuông, trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền nên AM=BC2=6,5
a, + △ABC△ABC vuông ở A nên theo định lí Pytago ta có: AB2+AC2=BC2AB2+AC2=BC2
Hay: 52+AC2=132⟹AC=1252+AC2=132⟹AC=12
+ E là trung điểm của AB nên AE=EB=AB2=52=2,5AE=EB=AB2=52=2,5
+ N là trung điểm của AC nên AN=CN=AC2=122=6AN=CN=AC2=122=6
+ △AEC△AEC vuông ở A nên theo định lí Pytago ta có: EC2=AE2+AC2=2,52+122=150,25⟹EC≈12.3EC2=AE2+AC2=2,52+122=150,25⟹EC≈12.3
+ △ANB△ANB vuông ở A nên theo định lí Pytago ta có: NB2=AB2+AN2=62+52=61⟹BN≈7,8NB2=AB2+AN2=62+52=61⟹BN≈7,8
+ Trong tam giác vuông, trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền nên AM=BC2=6,5AM=BC2=6,5
b,+ SABC=AB.AC:2=12.5:2=30SABC=AB.AC:2=12.5:2=30
+ M là trung điểm BC nên BM=MC. Mà △OBM△OBM và △OCM△OCM có chung đường cao kẻ từ O nên SOBM=SOCMSOBM=SOCM
+ N là trung điểm AC nên AN=NC. Mà △AON△AON và △OCN△OCN có chung đường cao kẻ từ O nên SAON=SCONSAON=SCON
+ E là trung điểm AB nên AE=EB. Mà △OAE△OAE và △OEB△OEB có chung đường cao kẻ từ O nên SOAE=SOEBSOAE=SOEB
+ Ta có: SOBM+SOCM+SAON+SCON+SOAE+SOEB=SABCSOBM+SOCM+SAON+SCON+SOAE+SOEB=SABC. Hay:
6.SOBM=SABC⟹SOBM=SOCM=SABC6=30:6=5 (cm2)6.SOBM=SABC⟹SOBM=SOCM=SABC6=30:6=5 (cm2)
+Vậy SBOC=SOBM+SOCM=5.2=10 (cm2)
b) Ta có: Sabc là
( AB*AC ) / 2
mà AB = 5cm ( GT ) , AC = 12 cm ( câu a)
suy ra ( 5*12 ) / 2 = 30 ( cm2 )
Tương tự ta có Seac là 15 cm2
Sbeo = Sabc - Seac =30 - 15 = 15 cm2
Lại có Sboc = 2/3 Sbe
Suy ra Sboc = 2/3 * 15 = 10 (cm2 )
Vậy diện tích tam giác BOC là 10 cm2
a: Ta có: \(AM=MB=\dfrac{AB}{2}\)
\(AN=NC=\dfrac{AC}{2}\)
mà AB=AC
nên AM=MB=AN=NC
Xét ΔABN và ΔACM có
AB=AC
\(\widehat{BAN}\) chung
AN=AM
Do đó: ΔABN=ΔACM
=>BN=CM
b: Xét ΔMBC và ΔNCB có
MB=NC
MC=NB
BC chung
Do đó: ΔMBC=ΔNCB
=>\(\widehat{MCB}=\widehat{NBC}\)
=>\(\widehat{GBC}=\widehat{GCB}\)
=>ΔGBC cân tại G
c: Xét ΔABC có
BN,CM là các đường cao
BN cắt CM tại G
Do đó: G là trọng tâm của ΔABC
Xét ΔABC có
G là trọng tâm
AG cắt BC tại D
DO đó: \(AG=\dfrac{2}{3}AD=\dfrac{2}{3}\cdot3=2\left(cm\right)\)