Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A)+ △ABC△ABC vuông ở A nên theo định lí Pytago ta có:
AB2+AC2=BC2
AB2+AC2=BC2
Hay: 52+AC2=132
⟹AC=1252+AC2=132
⟹AC=12
+ E là trung điểm của AB nên :AE=EB=AB2=52=2,5AE=EB=AB2=52=2,5
+ N là trung điểm của AC nên :AN=CN=AC2=122=6AN=CN=AC2=122=6
+ △AEC△AEC vuông ở A nên theo định lí Pytago ta có:
EC2=AE2+AC2=2,52+122=150,25
⟹EC≈12.3EC2=AE2+AC2=2,52+122=150,25
⟹EC≈12.3
+ △ANB△ANB vuông ở A nên theo định lí Pytago ta có:
NB2=AB2+AN2=62+52=61
⟹BN≈7,8NB2=AB2+AN2=62+52=61
⟹BN≈7,8
+ Trong tam giác vuông, trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền nên
AM=BC2=6,5AM=BC2=6,5
b) Ta có: Sabc là
( AB*AC ) / 2
mà AB = 5cm ( GT ) , AC = 12 cm ( câu a)
suy ra ( 5*12 ) / 2 = 30 ( cm2 )
Tương tự ta có Seac là 15 cm2
Sbeo = Sabc - Seac =30 - 15 = 15 cm2
Lại có Sboc = 2/3 Sbe
Suy ra Sboc = 2/3 * 15 = 10 (cm2 )
Vậy diện tích tam giác BOC là 10 cm
a, + △ABC△ABC vuông ở A nên theo định lí Pytago ta có: AB2+AC2=BC2
Hay: 52+AC2=132⟹AC=1252+AC2=132⟹AC=12
+ E là trung điểm của AB nên AE=EB=AB2=52=2,5
+ N là trung điểm của AC nên AN=CN=AC2=122=6
+ △AEC△AEC vuông ở A nên theo định lí Pytago ta có: EC2=AE2+AC2=2,52+122=150,25⟹EC≈12.3
+ △ANB△ANB vuông ở A nên theo định lí Pytago ta có: NB2=AB2+AN2=62+52=61⟹BN≈7,8
+ Trong tam giác vuông, trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền nên AM=BC2=6,5
a, + △ABC△ABC vuông ở A nên theo định lí Pytago ta có: AB2+AC2=BC2AB2+AC2=BC2
Hay: 52+AC2=132⟹AC=1252+AC2=132⟹AC=12
+ E là trung điểm của AB nên AE=EB=AB2=52=2,5AE=EB=AB2=52=2,5
+ N là trung điểm của AC nên AN=CN=AC2=122=6AN=CN=AC2=122=6
+ △AEC△AEC vuông ở A nên theo định lí Pytago ta có: EC2=AE2+AC2=2,52+122=150,25⟹EC≈12.3EC2=AE2+AC2=2,52+122=150,25⟹EC≈12.3
+ △ANB△ANB vuông ở A nên theo định lí Pytago ta có: NB2=AB2+AN2=62+52=61⟹BN≈7,8NB2=AB2+AN2=62+52=61⟹BN≈7,8
+ Trong tam giác vuông, trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền nên AM=BC2=6,5AM=BC2=6,5
b,+ SABC=AB.AC:2=12.5:2=30SABC=AB.AC:2=12.5:2=30
+ M là trung điểm BC nên BM=MC. Mà △OBM△OBM và △OCM△OCM có chung đường cao kẻ từ O nên SOBM=SOCMSOBM=SOCM
+ N là trung điểm AC nên AN=NC. Mà △AON△AON và △OCN△OCN có chung đường cao kẻ từ O nên SAON=SCONSAON=SCON
+ E là trung điểm AB nên AE=EB. Mà △OAE△OAE và △OEB△OEB có chung đường cao kẻ từ O nên SOAE=SOEBSOAE=SOEB
+ Ta có: SOBM+SOCM+SAON+SCON+SOAE+SOEB=SABCSOBM+SOCM+SAON+SCON+SOAE+SOEB=SABC. Hay:
6.SOBM=SABC⟹SOBM=SOCM=SABC6=30:6=5 (cm2)6.SOBM=SABC⟹SOBM=SOCM=SABC6=30:6=5 (cm2)
+Vậy SBOC=SOBM+SOCM=5.2=10 (cm2)
b) Ta có: Sabc là
( AB*AC ) / 2
mà AB = 5cm ( GT ) , AC = 12 cm ( câu a)
suy ra ( 5*12 ) / 2 = 30 ( cm2 )
Tương tự ta có Seac là 15 cm2
Sbeo = Sabc - Seac =30 - 15 = 15 cm2
Lại có Sboc = 2/3 Sbe
Suy ra Sboc = 2/3 * 15 = 10 (cm2 )
Vậy diện tích tam giác BOC là 10 cm2
a: Ta có: \(AM=MB=\dfrac{AB}{2}\)
\(AN=NC=\dfrac{AC}{2}\)
mà AB=AC
nên AM=MB=AN=NC
Xét ΔABN và ΔACM có
AB=AC
\(\widehat{BAN}\) chung
AN=AM
Do đó: ΔABN=ΔACM
=>BN=CM
b: Xét ΔMBC và ΔNCB có
MB=NC
MC=NB
BC chung
Do đó: ΔMBC=ΔNCB
=>\(\widehat{MCB}=\widehat{NBC}\)
=>\(\widehat{GBC}=\widehat{GCB}\)
=>ΔGBC cân tại G
c: Xét ΔABC có
BN,CM là các đường cao
BN cắt CM tại G
Do đó: G là trọng tâm của ΔABC
Xét ΔABC có
G là trọng tâm
AG cắt BC tại D
DO đó: \(AG=\dfrac{2}{3}AD=\dfrac{2}{3}\cdot3=2\left(cm\right)\)