K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2017

Áp dụng Holder:

\(24VT=\left(1+1+1+1+1+1\right)\left(a^3+a^3+c^3+c^3+b^3+b^3\right)\left(\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{a^3}+\frac{1}{c^3}\right)\ge\left(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\right)^3\)

Mà \(\left(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\right)^2\ge36\)( AM-GM)

\(24VT\ge36\left(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\right)\Leftrightarrow VT\ge VF\)

Dấu = xảy ra khi a=b=c . 

P/s: BĐT holder: \(\left(a_1^n+a^n_2+...a_3^n\right)\left(b_1^n+b_2^n+...b_n^n\right)...\left(z_1^n+z_2^n+...z_n^n\right)\ge\left(a_1.b_1..z_1+a_2.b_2..z_2+...+a_n.b_n.z_n\right)^n\)

30 tháng 3 2017

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge\frac{\left(1+1+1\right)^2}{3+a+b+c+}=\frac{9}{6}=\frac{3}{2}\)

31 tháng 3 2017

Cái đó chỉ đúng khi 1/1+a=1/1+b=1/1+c thoi

19 tháng 11 2017

ta có \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge9\)

\(\Leftrightarrow a^2+b^2+c^2\ge3\)

Bất đẳng thức chứng minh tương đương với:

\(\frac{a^2b}{2+a^2b}+\frac{b^2c}{2+b^2c}+\frac{c^2a}{2+c^2a}\le1\)

Áp dụng Cô-si ta có:

\(2+a^2b=1+1+a^2b\ge3\sqrt[3]{a^2b}\)

\(\Rightarrow\frac{a^2b}{2+a^2b}\le\frac{1}{3}\sqrt[3]{a^2b^2c^2}\le\frac{2a^2+b^2}{9}\)

CHưng minh tương tự ta có:

\(\frac{b^2c}{2+b^2c}\le\frac{2b^2+c^2}{9},\frac{c^2a}{2+c^2a}\le\frac{2c^2+a^2}{9}\)

Cộng là ta có \(đpcm.\)

Dấu \(=\)xảy ra khi \(a=b=c=1\)

19 tháng 11 2017

AM-GM ngược 

NV
20 tháng 6 2019

Ta có đánh giá: \(\frac{a^7+b^7}{a^5+b^5}\ge\frac{a^2+b^2}{2}\)

\(\Leftrightarrow2a^7+2b^7\ge a^7+b^7+a^5b^2+a^2b^5\)

\(\Leftrightarrow a^5\left(a^2-b^2\right)-b^5\left(a^2-b^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\left(a^4+a^3b+a^2b^2+ab^3+b^4\right)\ge0\) (luôn đúng)

Tương tự \(\frac{b^7+c^7}{b^5+c^5}\ge\frac{b^2+c^2}{2}\) ; \(\frac{c^7+a^7}{c^5+a^5}\ge\frac{a^2+c^2}{2}\)

\(\Rightarrow VT\ge a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

NV
19 tháng 6 2019

Thực hiện phép biến đổi tương đương:

\(\Leftrightarrow\frac{a^2+b^2+2}{\left(1+a^2\right)\left(1+b^2\right)}\ge\frac{2}{1+ab}\)

\(\Leftrightarrow\left(1+ab\right)\left(a^2+b^2+2\right)\ge2\left(1+a^2+b^2+a^2b^2\right)\)

\(\Leftrightarrow a^2+b^2+2+a^3b+ab^3+2ab\ge2+2a^2+2b^2+2a^2b^2\)

\(\Leftrightarrow a^3b-2a^2b^2+ab^3-a^2+2ab-b^2\ge0\)

\(\Leftrightarrow ab\left(a-b\right)^2-\left(a-b\right)^2\ge0\)

\(\Leftrightarrow\left(ab-1\right)\left(a-b\right)^2\ge0\) (luôn đúng do \(ab>1\))

Dấu "=" xảy ra khi \(a=b\)

NV
19 tháng 6 2019

Bài lớp 8 thật hả? :(

\(\frac{a}{a+b+1}+\frac{b}{b+c+1}+\frac{c}{c+a+1}\le1\)

\(\Leftrightarrow\frac{a}{4-a}+\frac{b}{4-b}+\frac{c}{4-c}\le1\)

\(\Leftrightarrow a\left(4-b\right)\left(4-c\right)+b\left(4-a\right)\left(4-c\right)+c\left(4-a\right)\left(4-b\right)\le\left(4-a\right)\left(4-b\right)\left(4-c\right)\)

\(\Leftrightarrow a^2b+ac^2+b^2c+abc\le4\) (1)

Ta cần chứng minh (1)

Không mất tính tổng quát, giả sử \(a\le c\le b\)

\(\Rightarrow a\left(a-c\right)\left(b-c\right)\le0\)

\(\Leftrightarrow a^2b+ac^2\le a^2c+abc\)

\(\Leftrightarrow a^2b+ac^2+b^2c+abc\le a^2c+abc+b^2c+abc\)

\(\Leftrightarrow a^2b+ac^2+b^2c+abc\le c\left(a+b\right)^2\)

\(\Leftrightarrow a^2b+ac^2+b^2c+abc\le\frac{1}{2}.2c\left(a+b\right)\left(a+b\right)\le\frac{1}{2}.\frac{\left(2c+a+b+a+b\right)^3}{27}\)

\(\Leftrightarrow a^2b+ac^2+b^2c+abc\le\frac{1}{2}.\frac{8.3^3}{27}=4\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

19 tháng 6 2019

Bài lớp 8 đấy bạn