Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2) Theo nguyên lí Dirichlet, trong ba số \(a^2-1;b^2-1;c^2-1\) có ít nhất hai số nằm cùng phía với 1.
Giả sử đó là a2 - 1 và b2 - 1. Khi đó \(\left(a^2-1\right)\left(b^2-1\right)\ge0\Leftrightarrow a^2b^2-a^2-b^2+1\ge0\)
\(\Rightarrow a^2b^2+3a^2+3b^2+9\ge4a^2+4b^2+8\)
\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\ge4\left(a^2+b^2+2\right)\)
\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\left(c^2+3\right)\ge4\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\) (2)
Mà \(4\left[\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\right]\ge4\left(a+b+c+1\right)^2\) (3)(Áp dụng Bunhicopxki và cái ngoặc vuông)
Từ (2) và (3) ta có đpcm.
Sai thì chịu
Xí quên bài 2 b:v
b) Không mất tính tổng quát, giả sử \(\left(a^2-\frac{1}{4}\right)\left(b^2-\frac{1}{4}\right)\ge0\)
Suy ra \(a^2b^2-\frac{1}{4}a^2-\frac{1}{4}b^2+\frac{1}{16}\ge0\)
\(\Rightarrow a^2b^2+a^2+b^2+1\ge\frac{5}{4}a^2+\frac{5}{4}b^2+\frac{15}{16}\)
Hay \(\left(a^2+1\right)\left(b^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{3}{4}\right)\)
Suy ra \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{1}{4}+\frac{1}{2}\right)\left(\frac{1}{4}+\frac{1}{4}+c^2+\frac{1}{2}\right)\)
\(\ge\frac{5}{4}\left(\frac{1}{2}a+\frac{1}{2}b+\frac{1}{2}c+\frac{1}{2}\right)^2=\frac{5}{16}\left(a+b+c+1\right)^2\) (Bunhiacopxki) (đpcm)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)
Bạn có thể tham khảo cách này
Đặt \(\hept{\begin{cases}\frac{1}{a}=x\\\frac{2}{b}=y\\\frac{3}{c}=z\end{cases}}\Rightarrow x+y+z=3\)
BĐT thành \(\frac{x^3}{x^2+y^2}+\frac{y^3}{y^2+z^2}+\frac{z^3}{z^2+x^2}\ge\frac{3}{2}\left(1\right)\)
ta sẽ dùng Bđt Cói \(\frac{x^3}{x^2+y^2}=x-\frac{xy^2}{x^2+y^2}\ge x-\frac{xy^2}{2xy}=x-\frac{y}{2}\)
Tương tự rồi cộng lại
\(\left(1\right)\ge x+y+z-\frac{x+y+z}{2}=3-\frac{3}{2}=\frac{3}{2}\)
Dấu = khi \(x=y=z=1\Rightarrow\hept{\begin{cases}a=1\\b=2\\c=3\end{cases}}\)
Đặt \(\hept{\begin{cases}x=\frac{1}{a}\\y=\frac{2}{b}\\z=\frac{3}{c}\end{cases}\Rightarrow}\hept{\begin{cases}x,y,z>0\\x+y+z=3\end{cases}}\)
Khi đó ta có BĐT cần chứng minh tương đương với:
\(P=\frac{x^3}{x^2+y^2}+\frac{y^3}{y^2+z^2}+\frac{z^3}{z^2+x^2}\ge\frac{3}{2}\)
Ta có: \(P\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2y+y^2z+z^2x+xy^2+yz^2+zx^2}\)
Ta cũng có: \(3\left(x^2+y^2+z^2\right)=\left(x+y+z\right)\left(x^2+y^2+z^2\right)\)
\(=x^3+y^3+z^3+xy^2+yz^2+zx^2+x^2y+y^2z+z^2x\)
\(\ge3\left(x^2y+y^2z+z^2x\right)\)
\(\Rightarrow x^2y+y^2z+z^2x\le x^2+y^2+z^2\)
Chứng minh tương tự ta có: \(xy^2+yz^2+zx^2\le x^2+y^2+z^2\)
\(\Rightarrow P\ge\frac{x^2+y^2+z^2}{2}\ge\frac{\left(x+y+z\right)^2}{3}=\frac{3}{2}\)
Dấu = khi \(x=y=z\)hay\(\hept{\begin{cases}a=1\\b=2\\b=3\end{cases}}\)
Bn thiếu đề nhé : \(DK:abc=1\)
Áp dụng BĐT Cauchy-Schwarz ta có :
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{8}+\frac{1+c}{8}\ge3\sqrt[3]{\frac{a^3}{\left(1+b\right)\left(1+c\right)}.\frac{1+b}{8}.\frac{1+c}{8}}=\frac{3}{4}a\)
Tương tự \(\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{1+c}{8}+\frac{1+a}{8}\ge\frac{3}{4}b\)
Và .\(\frac{c^3}{\left(1+a\right)\left(1+b\right)}+\frac{1+a}{8}+\frac{1+b}{8}\ge\frac{3}{4}c\)
Cộng vế với vế của các bđt trên ta được :
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+a\right)\left(1+c\right)}+\frac{c^3}{\left(1+b\right)\left(1+a\right)}+\frac{1}{4}\left(a+b+c\right)+\frac{3}{4}\ge\frac{3}{4}\left(a+b+c\right)\)
\(\Leftrightarrow\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+a\right)\left(1+c\right)}+\frac{c^3}{\left(1+b\right)\left(1+a\right)}\ge\frac{1}{2}\left(a+b+c\right)-\frac{3}{4}\)
\(\ge\frac{1}{2}.3\sqrt[3]{abc}-\frac{3}{4}\ge\frac{3}{2}-\frac{3}{4}=\frac{3}{4}\) (ĐPCM)
\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=\frac{\left(xy+yz+zx\right)^2}{x^2y^2z^2}\)(1) với x+y+z=0. Bạn quy đồng vế trái (1) dc \(\frac{x^2y^2+y^2z^2+z^2x^2}{x^2y^2z^2}=\frac{\left(xy+yz+zx\right)^2-2\left(x+y+z\right)xyz}{x^2y^2z^2}\)
Đặt P = 1/a³(b + c) + 1/b³(a + c) +1/c³(a + b)
= bc/a²(b + c) + ac/b²(a + c) + ab/c²(a + b) ------- (do abc = 1)
= 1 / a²[(1/c) + (1/b)] + 1 / b²[(1/c) + (1/a)] + 1 / c²[(1/b) + (1/a)]
= (1/a²) / [(1/c) + (1/b)] + (1/b²) / [(1/c) + (1/a)] + (1/c²) / [(1/b) + (1/a)]
Đặt 1/a = x, 1/b = y, 1/c = z thì xyz = 1
Và khi đó:
P = x²/(y + z) + y²/(z + x) + z²/(x + y)
Sử dụng BĐT Cauchy:
♠ x²/(y + z) + (y + z)/4 ≥ x
♠ y²/(z + x) + (z + x)/4 ≥ y
♠ z²/(x + y) + (x + y)/4 ≥ z
Cộng vế 3 BĐT trên ta được
P + (x + y + z)/2 ≥ x + y + z
Hay:
P ≥ (x + y + z)/2
Lại theo Cauchy thì x + y + z ≥ 3.³√(xyz) = 3
Nên P ≥ 3/2 (và ta được đpcm)
https://olm.vn/hoi-dap/question/1036432.html
vào đây xem nhé,cách ngắn hơn
\(BDT\Leftrightarrow\frac{a^3}{\left(1-a\right)^2}+\frac{b^3}{\left(1-b\right)^2}+\frac{c^3}{\left(1-c\right)^2}\ge\frac{1}{4}\)
Ta có BĐT phụ: \(\frac{a^3}{\left(1-a\right)^2}\ge a-\frac{1}{4}\)
\(\Leftrightarrow\frac{\left(3a-1\right)^2}{4\left(a-1\right)^2}\ge0\forall0< a\le\frac{1}{3}\)
Tương tự cho 2 BĐT còn lại cũng có:
\(\frac{b^3}{\left(1-b\right)^2}\ge b-\frac{1}{4};\frac{c^3}{\left(1-c\right)^2}\ge c-\frac{1}{4}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\ge\left(a+b+c\right)-\frac{1}{4}\cdot3=1-\frac{3}{4}=\frac{1}{4}=VP\)
Xảy ra khi \(a=b=c=\frac{1}{3}\)
Áp dụng BĐT cô si ta có:
\(\frac{a^3}{\left(b+c\right)^2}+\frac{1a}{4}\ge\frac{a^2}{b+c}\)\(,\frac{b^3}{\left(c+a\right)^2}+\frac{1b}{4}\ge\frac{b^2}{a+c},\frac{c^3}{\left(a+b\right)^2}+\frac{1c}{4}\ge\frac{c^2}{a+b}\)
Cộng lại ta có
\(VT\ge\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}-\frac{1}{4}\left(a+b+c\right)\)
\(\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}-\frac{1}{4}=\frac{1}{2}-\frac{1}{4}=\frac{1}{4}\left(đpcm\right)\)
Dấu =tự tìm Ok
Áp dụng Holder:
\(24VT=\left(1+1+1+1+1+1\right)\left(a^3+a^3+c^3+c^3+b^3+b^3\right)\left(\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{a^3}+\frac{1}{c^3}\right)\ge\left(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\right)^3\)
Mà \(\left(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\right)^2\ge36\)( AM-GM)
\(24VT\ge36\left(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\right)\Leftrightarrow VT\ge VF\)
Dấu = xảy ra khi a=b=c .
P/s: BĐT holder: \(\left(a_1^n+a^n_2+...a_3^n\right)\left(b_1^n+b_2^n+...b_n^n\right)...\left(z_1^n+z_2^n+...z_n^n\right)\ge\left(a_1.b_1..z_1+a_2.b_2..z_2+...+a_n.b_n.z_n\right)^n\)