tính
\(A=\frac{2016.2017+2018.21+1996}{2018.2017+2017.2016}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình làm bừa nha đúng đúng sai sai bạn đừng giận nhé !
\(\frac{1}{2019.2018}-\frac{1}{2018.2017}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(=\frac{1}{2019}-\frac{1}{2018}...-\frac{1}{3}-\frac{1}{2}-\frac{1}{2}-\frac{1}{1}\)
\(=\frac{1}{2019}-\left(\frac{1}{2018}-\frac{1}{2018}\right)-..-\frac{1}{1}\)
\(=\frac{1}{2019}-0-\frac{1}{1}=\frac{1}{2019}-\frac{1}{1}\)
\(=-\frac{2018}{2019}\)
\(\frac{1}{2019.2018}-\frac{1}{2018.2017}-...-\frac{1}{3.2}-\frac{1}{2.1}.\)
\(=-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2017.2018}+\frac{1}{2018.2019}\right)\)
\(=-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2017}-\frac{1}{2018}+\frac{1}{2018}-\frac{1}{2019}\right)\)
\(=-\left(1-\frac{1}{2019}\right)=-\frac{2018}{2019}\)
\(\frac{4}{2.3}.\frac{10}{3.4}...>\frac{2016.2017-2}{2016.2017}\)
A = \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\)
= \(1-\frac{1}{2017}\)
= \(\frac{2016}{2017}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2016}-\frac{1}{2017}\)
\(A=1+\left(-\frac{1}{2}+\frac{1}{2}\right)+\left(-\frac{1}{3}+\frac{1}{3}\right)+...+\left(-\frac{1}{2016}+\frac{1}{2016}\right)-\frac{1}{2017}\)
\(A=1+0+0+...+0-\frac{1}{2017}\)
\(A=1-\frac{1}{2017}\)
\(A=\frac{2017}{2017}-\frac{1}{2017}\)
\(A=\frac{2016}{2017}\)
Vậy: \(A=\frac{2016}{2017}\)
Ta có \(A=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{2016.2017}\)
\(\Rightarrow A=2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}\right)\)
\(\Rightarrow A=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...-\frac{1}{2016}+\frac{1}{2017}\right)\)
\(\Rightarrow A=2\left(1-\frac{1}{2017}\right)\)
\(\Rightarrow A=2\left(\frac{2016}{2017}\right)\)
\(\Rightarrow A=\frac{4032}{2017}\)
Ta có:\(\frac{2}{1\cdot2}+\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+....+\frac{2}{2016\cdot2017}\)
\(=\frac{2}{1}-\frac{2}{2}+\frac{2}{2}-\frac{2}{3}+\frac{2}{3}-\frac{2}{4}+....+\frac{2}{2016}-\frac{2}{2017}\)
\(=\frac{2}{1}-\frac{2}{2017}=2-\frac{2}{2017}=\frac{4034}{2017}-\frac{2}{2017}=\frac{4032}{2017}\)
a.\(\frac{2015.2016-1}{2015.2016}=1-\frac{1}{2015.2016}\)
\(\frac{2016.2017-1}{2016.2017}=1-\frac{1}{2016.2017}\)
vì \(\frac{1}{2015.2016}>\frac{1}{2016.2017}\)
=>\(-\frac{1}{2015.2016}< -\frac{1}{2016.2017}\)
=>\(1-\frac{1}{2015.2016}< 1-\frac{1}{2016.2017}\)
xet bt A ta co
A=2016.2017+1/2016.2017
=1+1/2016.2017
xet bt B ta co
B=2017.2018+1/2017.2018
=1+1/2017.2018
vì 1/2016.2017>1/2017.2018
nen 1+1/2016.2017>1+1/2017.2018
suy ra A>B
ai thay mik lam đúng thì k cho mik nha
A= (2017.2016+1009)-(2018.2016-1007)
A=2016x(2017-2018)+1009+1007
A=2016x-1+(1009+1007)
A=-2016+2016
A=0
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{2016.2017}\)
\(A=\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+......+\left(\frac{1}{2016}-\frac{1}{2017}\right)\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{2016}-\frac{1}{2017}\)
\(A=\frac{1}{1}-\frac{1}{2017}\)
\(A=\frac{2016}{2017}\)
A=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{2016.2017}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{2016}-\frac{1}{2017}\)
\(\Rightarrow A=1-\frac{1}{2017}\)
\(\Rightarrow A=\frac{2016}{2017}\)
Ta có : \(A=\left(1-\frac{1}{1.2}\right)+\left(1-\frac{1}{2.3}\right)+.......+\left(1-\frac{1}{2016.2017}\right)\)
\(\Rightarrow A=\left(1+1+1+......+1\right)-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{2016.2017}\right)\)
\(\Rightarrow A=2016-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{2016}-\frac{1}{2017}\right)\)
\(\Rightarrow A=2016-\left(1-\frac{1}{2017}\right)\)
\(\Rightarrow A=2016-\frac{2016}{2017}=2015\frac{1}{2017}\)
\(=\frac{2016.2017+2018.21+1996}{2017.2016+2018.2017}\)
\(=\frac{2018.21+1996}{2018.2017}\)
\(=\frac{21+1996}{2017}\)
\(=\frac{2017}{2017}\)
\(=1\)