Cho tam giác ABC cuông tại A, đường cao AH. Vẽ HE vuông góc AB tại E, HF vuông góc AC tại F.
a) tứ giác AEHF là hình j? Vì sao? Từ đó cm: Tam giác AEH đồng dạng với tam giác CFH
b) Cm: tam giác AEF đồng dạng tam giác ACB.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBHE vuông tại E và ΔBAH vuông tạiH có
góc B chung
=>ΔBHE đồng dạngvơi ΔBAH
b: góc AEH=góc AFH=góc FAE=90 độ
=>AEHF là hình chữ nhật
c,d: Xét ΔAHC vuông tại H có HF là đường cao
nên AH^2=AF*AC và CH^2=CF*CA
e: AE*AB=AF*AC=AH^2
=>AE/AC=AF/AB
mà góc EAF chung
nên ΔAEF đồng dạng với ΔACB
a: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
Do đó: AEHF là hình chữ nhật
a: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
Do đó: AEHF là hình chữ nhật
a: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
Do đó: AEHF là hình chữ nhật
a) Tứ giác \(AEHF\)có: \(\widehat{A}=\widehat{E}=\widehat{F}=90^0\)
\(\Rightarrow\)\(AEHF\) là hình chữ nhật
Xét \(\Delta AEH\)và \(\Delta CFH\) có:
\(\widehat{AEH}=\widehat{CFH}=90^0\)
\(\widehat{EAH}=\widehat{FCH}\) (cùng phụ với góc HAC)
suy ra: \(\Delta AEH~\Delta CFH\) (g.g)