ab x y = abo abo
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x × a = aa
x × a = 10 × a + a
x × a = 11 × a
x = 11 × a : a
x = 11
b) ab × x = abab
x = abab : ab
x = (ab × 100 + ab) : ab
x = 101 × ab : ab
x = 101
c) abc × x = abcabc
abc × x = abc × 1001
x = abc × 1001 : abc
x = 1001
d) ab0 : x = ab
x = ab0 : ab
x = 10 × ab : ab
x = 10
a: AB*DC=1/4*AD^2=(1/2*AD)^2=AO*DO
=>AB/DO=AO/DC
=>ΔABO đồng dạng với ΔDOC
b: ΔABO đồng dạng với ΔDOC
=>góc AOB=góc DCO
=>góc AOB+góc DOC=90 độ
=>góc BOC=90 độ
c: Xét ΔOCB vuông tại O và ΔABO vuông tại A có
góc OBC=góc AOB
=>ΔOCB đồng dạng với ΔABO
ab0-ab =612
10xab-ab = 612
(10-1)xab =612
9xab =612
ab =612:9
ab =68
Vậy ab=68
a) Xét tam giác tam giác ABO và tam giác CDO có:
+ OB = OD (gt).
+ OA = OC (gt).
+ ^AOB = ^COD (2 góc đối đỉnh).
=> Tam giác ABO = Tam giác CDO (c - g - c).
b) Xét tứ giác ABCD có:
+ O là trung điểm của AC (do OA = OC).
+ O là trung điểm của BD (do OB = OD).
=> Tứ giác ABCD là hình bình hành (dhnb).
=> AB // CD (Tính chất hình bình hành).
c) Xét tam giác ABC có:
+ M là trung điểm của AB (gt).
+ O là trung điểm của AC (do OA = OC).
=> MO là đường trung bình.
=> MO // BC (Tính chất đường trung bình trong tam giác). (1)
Xét tam giác BDC có:
+ N là trung điểm của CD (gt).
+ O là trung điểm của BD (do OB = OD).
=> NO là đường trung bình.
=> NO // BC (Tính chất đường trung bình trong tam giác). (2)
Từ (1) và (2) => 3 điểm M; O; N thẳng hàng (đpcm).
a) Xét tam giác tam giác ABO và tam giác CDO có:
+ \(\text{OB = OD}\) (gt).
+ \(\text{OA = OC }\)(gt).
+ \(\widehat{AOB}\) = \(\widehat{COD}\) (2 góc đối đỉnh).
=> Tam giác ABO = Tam giác CDO (c - g - c).
b) Xét tứ giác ABCD có:
+ O là trung điểm của AC (do \(\text{OA = OC}\)).
+ O là trung điểm của BD (do \(\text{OB = OD}\)).
=> Tứ giác ABCD là hình bình hành (dhnb).
=> AB // CD (Tính chất hình bình hành).
c) Xét tam giác ABC có:
+ M là trung điểm của AB (gt).
+ O là trung điểm của AC (do \(\text{OA = OC}\)).
=> MO là đường trung bình.
=> MO // BC và MO = \(\dfrac{1}{2}\) BC (Tính chất đường trung bình trong tam giác). (1)
Xét tam giác BDC có:
+ N là trung điểm của CD (gt).
+ O là trung điểm của BD (do \(\text{OB = OD}\)).
=> NO là đường trung bình.
=> NO // BC và NO = \(\dfrac{1}{2}\) BC (Tính chất đường trung bình trong tam giác). (2)
Từ (1) và (2) => 3 điểm M; O; N thẳng hàng và MO = NO (do cùng = \(\dfrac{1}{2}\) BC).
=> O là trung điểm của MN (đpcm).
a) Xét tam giác tam giác ABO và tam giác CDO có:
+ OB = ODOB = OD (gt).
+ OA = OC OA = OC (gt).
+ ˆAOB���^ = ˆCOD���^ (2 góc đối đỉnh).
=> Tam giác ABO = Tam giác CDO (c - g - c).
b) Xét tứ giác ABCD có:
+ O là trung điểm của AC (do OA = OCOA = OC).
+ O là trung điểm của BD (do OB = ODOB = OD).
=> Tứ giác ABCD là hình bình hành (dhnb).
=> AB // CD (Tính chất hình bình hành).
c) Xét tam giác ABC có:
+ M là trung điểm của AB (gt).
+ O là trung điểm của AC (do OA = OCOA = OC).
=> MO là đường trung bình.
=> MO // BC và MO = 1212 BC (Tính chất đường trung bình trong tam giác). (1)
Xét tam giác BDC có:
+ N là trung điểm của CD (gt).
+ O là trung điểm của BD (do OB = ODOB = OD).
=> NO là đường trung bình.
=> NO // BC và NO = 1212 BC (Tính chất đường trung bình trong tam giác). (2)
Từ (1) và (2) => 3 điểm M; O; N thẳng hàng và MO = NO (do cùng = 1212 BC).
=> O là trung điểm của MN (đpcm).
y x 3 2 5 O A B H K D
a) Kẻ AD ⊥Oy tại D
Ta có OD=\(\left|3\right|=3\)
BD=\(\left|5\right|=5\)
AD=\(\left|2\right|=2\)
Ta có BD=AD+AB\(\Leftrightarrow AB=BD-AD=5-2=3\)
Diện tích tam giác ABO là
\(\dfrac{OD.AB}{2}=\dfrac{3.3}{2}=4,5\)
b) Kẻ AH⊥Ox tại H
BK⊥Ox tại K
Ta có AH=BK=\(\left|3\right|\)=3
OH=\(\left|2\right|=2\)
\(OK=\left|5\right|=5\)
Ta có △AHO vuông tại H\(\Rightarrow\)\(OA^2=AH^2+OH^2=3^2+2^2=9+4=13\Leftrightarrow OA=\sqrt{13}\)
Ta có △BKO vuông tại K\(\Rightarrow OB^2=BK^2+OK^2=3^2+5^2=9+25=34\Rightarrow OB=\sqrt{34}\)
Vậy chu vi tam giác ABO là \(OA+AB+OB=\sqrt{13}+3+\sqrt{34}\approx12,44\)
Hình như đề của bạn sai thì phải !
ko bít nữa thấy cô giao trên bảng vậy