K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2018

a)  Xét \(\Delta ABC\) và      \(\Delta HBA\)  có:

\(\widehat{BAC}=\widehat{AHB}=90^0\)

\(\widehat{B}\)   chung

suy ra:   \(\Delta ABC~\Delta HBA\)

\(\Rightarrow\)\(\frac{AB}{HB}=\frac{BC}{AB}\)

\(\Rightarrow\)\(AB^2=HB.BC\)

\(\Leftrightarrow\)\(6^2=HB.10\)

\(\Rightarrow\)\(HB=3,6\)

4 tháng 4 2018

bn ơi mk cần câu c cơ

5 tháng 5 2023

Em xem lại ghi đề đã chính xác chưa nhé!

5 tháng 5 2023

 

à tia phân giác ad của g0c HAC (D thu0c BC)

1: Xét ΔABC vuông tại A và ΔHBA vuông tại H có \(\widehat{B}\) chung

Do đó: ΔABC\(\sim\)ΔHBA

2: Xét ΔABC vuông tại A có AH là đường cao

nên \(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH=\dfrac{AB^2}{BC}=\dfrac{6^2}{10}=3.6\left(cm\right)\)

3: Xét ΔBAC có BK là đường phân giác

nên \(\dfrac{AK}{KC}=\dfrac{AB}{BC}\)

mà \(\dfrac{AB}{BC}=\dfrac{BH}{AB}\)

nên \(\dfrac{AK}{KC}=\dfrac{BH}{AB}\left(1\right)\)

Xét ΔAHC vuông tại H và ΔBHA vuông tại H có 

\(\widehat{HAC}=\widehat{HBA}\)

Do đó: ΔAHC\(\sim\)ΔBHA

Suy ra: \(\dfrac{AC}{AB}=\dfrac{AH}{BH}\)

=>BH/AH=AB/AC

hay \(\dfrac{BH}{AB}=\dfrac{AH}{AC}\left(2\right)\)

Từ (1) và (2) suy ra \(\dfrac{AK}{KC}=\dfrac{AH}{AC}\)

hay \(AK\cdot AC=AH\cdot KC\)

a: BC=căn 6^2+8^2=10cm

b: Xét ΔBAC vuông tại A và ΔBHA vuông tại H có

góc B chung

=>ΔBAC đồng dạng với ΔBHA

c: BA/BH=BC/BA

=>BA^2=BH*BC

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

b: ΔHBA đồng dạng với ΔABC

=>BH/BA=BA/BC

=>BA^2=BH*BC

4 tháng 6 2020

a)Xét ΔHAB và ΔABC  {AHBˆ=ABCˆCABˆ:chung  ⇒ΔAHB∼ΔABC(g−g)  b)Xét ΔABC ta có:  BC2=AC2+AB2  BC2=162+122  BC2=400  BC=400−−−√=20cm  Ta có ΔHAB~ΔABC(câu a)  ⇒AHAC=ABBC⇔AH16=1220  ⇒AH=12.1620=9,6cm  Xét ΔHBA ta được:  AH2+BH2=AB2  BH2=AB2−AH2  BH2=122−9,62  BH2=51,84  ⇒BH=51,84−−−−−√=7,2cm  c)Vì AD là đường phân giác của ΔABC nên:  ABBD=ACCD⇔ABBC−CD=ACCD  ⇔AB.CDCD.(BC−CD)=AC.(BC−CD)CD.(BC−CD)  ⇔AB.CD=AC.(BC−CD)   ⇔12.CD=16.20−16.CD  ⇔12.CD+16.CD=320  ⇔28.CD=320  ⇔CD=32028≈11.43(cm)  Độ dài cạnh BC là:  BD=BC-CD  BD=20−32028≈8,57(cm)

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

\(\widehat{B}\) chung

Do đó: ΔHBA\(\sim\)ΔABC

Xét ΔHBA vuông tại H và ΔHAC vuông tại H có 

\(\widehat{HBA}=\widehat{HAC}\)

Do đó: ΔHBA\(\sim\)ΔHAC

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AH^2=HB\cdot HC\end{matrix}\right.\)(hệ thức lượng)

c: \(AB=\sqrt{BC^2-AC^2}=12\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{12\cdot16}{20}=9.6\left(cm\right)\)

\(BH=\sqrt{AB^2-AH^2}=7.2\left(cm\right)\)

a) Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{ABC}\) chung

Do đó: ΔABC\(\sim\)ΔHBA(g-g)

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=9^2+12^2=225\)

hay BC=15(cm)

Vậy: BC=15cm