K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2017

Đặt A la tên của biểu thức trên

\(A=\frac{1}{1+3}+\frac{1}{1+3+5}+\frac{1}{1+3+5+7}+...+\frac{1}{1+3+5+...+2017}\)

\(=\frac{1}{2\left(3+1\right):2}+\frac{1}{3\left(5+1\right):2}+\frac{1}{4\left(7+1\right):2}+...+\frac{1}{1009\left(2017+1\right):2}\)

\(=\frac{2}{2.4}+\frac{2}{3.6}+\frac{2}{4.8}+....+\frac{2}{1009.2018}\)

\(=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{1009.1009}\)

\(=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1009^2}=\frac{1}{2^2}+\left(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1009^2}\right)\)

Ta có: \(\frac{1}{2^2}=\frac{1}{4}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

\(\frac{1}{4^2}< \frac{1}{3.4}\)

...........

\(\frac{1}{1009^2}< \frac{1}{1008.1009}\)

\(\Rightarrow A< \frac{1}{4}+\left(\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{1008.1009}\right)\)

\(A< \frac{1}{4}+\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{1008}-\frac{1}{1009}\right)\)

\(A< \frac{1}{4}+\left(\frac{1}{2}-\frac{1}{1009}\right)=\frac{1}{4}+\frac{1}{2}-\frac{1}{1009}=\frac{3}{4}-\frac{1}{1009}< \frac{3}{4}\)

Vậy ...

7 tháng 5 2017

Đặt tổng đã cho là A

\(\frac{1}{1+3}=\frac{1}{\left(3+1\right)x2:2}=\frac{1}{2x4:2}=\frac{1}{2x4}x2=\frac{2}{2x4}\)=\(\frac{1}{2x2}\)

\(\frac{1}{1+3+5}=\frac{1}{\left(1+5\right)x3:2}=\frac{1}{3x6}x2=\frac{2}{3x6}\)=\(\frac{1}{3x3}\)

\(\frac{1}{1+3+5+....+2017}=\frac{1}{\left(1+2017\right)x1009:2}=\frac{1}{1009x2018}x2=\frac{2}{1009x2018}\)=\(\frac{1}{1009x1009}\)

Các mẫu là bạn áp dụng tính tổng đó nha ( mk làm tắt)

A=\(\frac{1}{2x2}+\frac{1}{3x3}+...+\frac{1}{1009x1009}\)<\(\frac{1}{2x2}+\frac{1}{2x3}+\frac{1}{3x4}+....+\frac{1}{1008x1009}=\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{1008}-\frac{1}{1009}\)=\(\frac{1}{4}+\frac{1}{2}-\frac{1}{1009}< \frac{1}{4}+\frac{1}{2}=\frac{3}{4}\)

vậy A<3/4( Mk có làm tắt nên chỗ nào ko hiểu thì nhắn tin nha

13 tháng 8 2017

ở tử số ta làm thế này

\(TS=\left(1+\frac{1}{2014}\right)+\left(1+\frac{1}{2013}\right)+\left(1+\frac{1}{2012}\right)+...+\left(1+\frac{2013}{2}\right)\)

\(TS=2015\left(\frac{1}{2014}+\frac{1}{2013}+\frac{1}{2012}+...+\frac{1}{2}\right)\)

\(\frac{TS}{MS}=2015\)

5 tháng 5 2017

\(S=\frac{1}{1+3}+\frac{1}{1+3+5}+...+\frac{1}{1+3+5+7+...+2017}\)

\(S=\frac{1}{\left[\left(1+3\right):2\right]^2}+\frac{1}{\left[\left(1+5\right):2\right]^2}+...+\frac{1}{\left[\left(2017+1\right):2\right]^2}\)

\(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1009^2}\)

\(S< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1007.1008}\)

\(S< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1008}-\frac{1}{1009}\)

\(S< \)

Còn đâu làm nốt , tao đi ngủ đây

9 tháng 4 2019

em thử nhân S với 5 rồi lấy 5S= S thử đi

chị làm toàn như vậy

ko bt có đc ko nữa

31 tháng 7 2018

\(\frac{1}{3}\) + \(\frac{5}{6}\)\(\left(x-2\frac{1}{5}\right)\)\(\frac{3}{4}\)

<=> \(\frac{5}{6}\):\(\left(x-2\frac{1}{5}\right)\)\(\frac{3}{4}\)\(\frac{1}{3}\)

<=> \(\frac{5}{6}\) : \(\left(x-2\frac{1}{5}\right)\) = \(\frac{5}{12}\)

<=> \(\left(x-2\frac{1}{5}\right)\) =    \(\frac{5}{6}\) : \(\frac{5}{12}\)

,<=> \(\left(x-2\frac{1}{5}\right)\)=   2 

<=. x = 2 + \(\frac{11}{5}\)

<=> x = \(\frac{21}{5}\)

16 tháng 3 2016

nhớ phải 4 k thì làm

17 tháng 3 2016

tớ cần gấp !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!