K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2017

Đặt A la tên của biểu thức trên

\(A=\frac{1}{1+3}+\frac{1}{1+3+5}+\frac{1}{1+3+5+7}+...+\frac{1}{1+3+5+...+2017}\)

\(=\frac{1}{2\left(3+1\right):2}+\frac{1}{3\left(5+1\right):2}+\frac{1}{4\left(7+1\right):2}+...+\frac{1}{1009\left(2017+1\right):2}\)

\(=\frac{2}{2.4}+\frac{2}{3.6}+\frac{2}{4.8}+....+\frac{2}{1009.2018}\)

\(=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{1009.1009}\)

\(=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1009^2}=\frac{1}{2^2}+\left(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1009^2}\right)\)

Ta có: \(\frac{1}{2^2}=\frac{1}{4}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

\(\frac{1}{4^2}< \frac{1}{3.4}\)

...........

\(\frac{1}{1009^2}< \frac{1}{1008.1009}\)

\(\Rightarrow A< \frac{1}{4}+\left(\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{1008.1009}\right)\)

\(A< \frac{1}{4}+\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{1008}-\frac{1}{1009}\right)\)

\(A< \frac{1}{4}+\left(\frac{1}{2}-\frac{1}{1009}\right)=\frac{1}{4}+\frac{1}{2}-\frac{1}{1009}=\frac{3}{4}-\frac{1}{1009}< \frac{3}{4}\)

Vậy ...

7 tháng 5 2017

Đặt tổng đã cho là A

\(\frac{1}{1+3}=\frac{1}{\left(3+1\right)x2:2}=\frac{1}{2x4:2}=\frac{1}{2x4}x2=\frac{2}{2x4}\)=\(\frac{1}{2x2}\)

\(\frac{1}{1+3+5}=\frac{1}{\left(1+5\right)x3:2}=\frac{1}{3x6}x2=\frac{2}{3x6}\)=\(\frac{1}{3x3}\)

\(\frac{1}{1+3+5+....+2017}=\frac{1}{\left(1+2017\right)x1009:2}=\frac{1}{1009x2018}x2=\frac{2}{1009x2018}\)=\(\frac{1}{1009x1009}\)

Các mẫu là bạn áp dụng tính tổng đó nha ( mk làm tắt)

A=\(\frac{1}{2x2}+\frac{1}{3x3}+...+\frac{1}{1009x1009}\)<\(\frac{1}{2x2}+\frac{1}{2x3}+\frac{1}{3x4}+....+\frac{1}{1008x1009}=\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{1008}-\frac{1}{1009}\)=\(\frac{1}{4}+\frac{1}{2}-\frac{1}{1009}< \frac{1}{4}+\frac{1}{2}=\frac{3}{4}\)

vậy A<3/4( Mk có làm tắt nên chỗ nào ko hiểu thì nhắn tin nha

a) \(\frac{-1}{2}+\frac{-1}{9}-\frac{-3}{5}+\frac{1}{2006}-\frac{-2}{7}-\frac{7}{18}+\frac{4}{35}\)

\(=\left(\frac{-1}{2}-\frac{1}{9}-\frac{7}{18}\right)+\left(\frac{3}{5}+\frac{4}{35}\right)+\frac{1}{2006}\)

\(=\left(\frac{-9}{18}-\frac{2}{18}-\frac{7}{18}\right)+\left(\frac{21}{35}+\frac{4}{35}\right)+\frac{1}{2006}\)

\(=\left(\frac{-9-2-7}{18}\right)+\left(\frac{21+4}{35}\right)+\frac{1}{2006}\)

\(=\left(\frac{-18}{18}\right)+\left(\frac{25}{35}\right)+\frac{1}{2006}\)

\(=\left(-1\right)+\frac{5}{7}+\frac{1}{2006}\)\(=\frac{-4005}{14042}\)

b) \(\frac{1}{3}-\frac{3}{4}+\frac{3}{5}+\frac{1}{2007}-\frac{1}{36}+\frac{1}{15}-\frac{2}{9}\)

\(=\left(\frac{1}{3}+\frac{1}{2007}-\frac{2}{9}\right)-\left(\frac{3}{4}+\frac{1}{36}\right)+\left(\frac{3}{5}+\frac{1}{15}\right)\)

\(=\left(\frac{669}{2007}+\frac{1}{2007}-\frac{446}{2007}\right)-\left(\frac{27}{36}+\frac{1}{36}\right)+\left(\frac{9}{15}+\frac{1}{15}\right)\)

\(=\frac{224}{2007}-\frac{28}{36}+\frac{10}{15}\)

\(=\frac{224}{2007}-\frac{1561}{2007}+\frac{1338}{2007}\)\(=\frac{1}{2007}\)

3 tháng 5 2019

\(\frac{ }{ }\)

3 tháng 5 2019

\(1)\frac{1}{2}x-\frac{3}{5}=\frac{-4}{5}\)

\(\Rightarrow\frac{1}{2}x=\frac{-4}{5}+\frac{3}{5}\)

\(\Rightarrow\frac{1}{2}x=\frac{-1}{5}\)

\(\Rightarrow x=\frac{-1}{5}:\frac{1}{2}=\frac{-1}{5}\cdot\frac{2}{1}=\frac{-2}{5}\)

\(\Leftrightarrow x=\frac{-2}{5}\)

\(2)3\frac{1}{5}-2\frac{1}{3}x=-1\frac{3}{5}+1\frac{7}{10}\)

\(\Rightarrow\frac{16}{5}-\frac{7}{3}x=-\frac{8}{5}+\frac{17}{10}\)

\(\Rightarrow\frac{7}{3}x=\frac{16}{5}-\frac{-8}{5}+\frac{17}{10}\)

\(\Rightarrow\frac{7}{3}x=\frac{16}{5}+\frac{8}{5}+\frac{17}{10}\)

\(\Rightarrow\frac{7}{3}x=\frac{24}{5}+\frac{17}{10}\)

\(\Rightarrow\frac{7}{3}x=\frac{48}{10}+\frac{17}{10}\)

Đến đây tìm được rồi nhé

3,4, áp dụng bài 1,2 rồi làm :v

24 tháng 7 2015

A = \(-1\frac{1}{5}.\frac{4\left(3+\frac{1}{3}-\frac{3}{7}-\frac{3}{53}\right)}{3+\frac{1}{3}-\frac{3}{37}-\frac{3}{53}}:\frac{4+\frac{4}{17}+\frac{4}{19}+\frac{4}{2003}}{5+\frac{5}{17}+\frac{5}{19}+\frac{5}{2003}}\)
A = \(-1\frac{1}{5}.\)4 : \(\frac{4.\left(1-\frac{1}{17}+\frac{1}{19}+\frac{1}{2003}\right)}{5.\left(1-\frac{1}{17}+\frac{1}{19}+\frac{1}{2003}\right)}\)
A = \(-1\frac{1}{5}.4\)\(\frac{4}{5}\)\(\frac{-6}{5}\).4. \(\frac{5}{4}\)
A = \(\frac{-24}{5}.\frac{5}{4}\)=\(\frac{\left(-6\right).1}{1.1}\)= -6.

HD
24 tháng 7 2015

\(A=-1\frac{1}{5}.\frac{4\left(3+\frac{1}{3}-\frac{3}{37}-\frac{3}{53}\right)}{3+\frac{1}{3}-\frac{3}{37}-\frac{3}{53}}:\frac{4+\frac{4}{17}+\frac{4}{19}+\frac{4}{2003}}{5+\frac{5}{17}+\frac{5}{19}+\frac{5}{2003}}\)

\(=-1\frac{1}{5}.\frac{4\left(3+\frac{1}{3}-\frac{3}{37}-\frac{3}{53}\right)}{3+\frac{1}{3}-\frac{3}{37}-\frac{3}{53}}:\frac{4\left(1+\frac{1}{17}+\frac{1}{19}+\frac{1}{2003}\right)}{5\left(1+\frac{1}{17}+\frac{1}{19}+\frac{1}{2003}\right)}\)

\(=-1\frac{1}{5}.\frac{4}{1}:\frac{4}{5}\)

\(=-1\frac{1}{5}.\frac{4}{1}.\frac{5}{4}\)

\(=-1\)

 

21 tháng 4 2016

a)\(19\frac{5}{8}:\frac{7}{12}-15\frac{1}{4}:\frac{7}{12}\)

=(\(19\frac{5}{8}-15\frac{1}{4}\)):\(\frac{7}{12}\)

=(\(19\frac{10}{16}-15\frac{4}{16}\)):\(\frac{7}{12}\)

=\(4\frac{6}{16}:\frac{7}{12}\)

=\(\frac{35}{8}:\frac{7}{12}\)

=\(\frac{35}{8}\cdot\frac{12}{7}\)

=\(\frac{15}{2}\)

b)2/5*1/3-2/15:1/5+3/5*1/3

=2/15-2/3+1/5

=-8/15+1/5

=-1/3

aidi qua dong tinh nho h chom minh nhe

10 tháng 4 2016

a ) \(\frac{5}{7}.\frac{-7}{9}-\frac{5}{7}.\frac{2}{9}-\frac{5}{9}\)

6 tháng 4 2019

\(a)\frac{\left(\frac{3}{10}-\frac{4}{15}-\frac{7}{20}\right).\frac{5}{19}}{\left(\frac{1}{14}+\frac{1}{7}-\frac{-3}{35}\right).\frac{-4}{3}}\)\(=\frac{\frac{-19}{60}.\frac{5}{19}}{\frac{3}{10}.\frac{-4}{3}}=\frac{5}{24}\)

Hok tốt

6 tháng 4 2019

Yume Nguyễn bạn giải giúp mk phần b đc k