K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2017

Đặt A la tên của biểu thức trên

\(A=\frac{1}{1+3}+\frac{1}{1+3+5}+\frac{1}{1+3+5+7}+...+\frac{1}{1+3+5+...+2017}\)

\(=\frac{1}{2\left(3+1\right):2}+\frac{1}{3\left(5+1\right):2}+\frac{1}{4\left(7+1\right):2}+...+\frac{1}{1009\left(2017+1\right):2}\)

\(=\frac{2}{2.4}+\frac{2}{3.6}+\frac{2}{4.8}+....+\frac{2}{1009.2018}\)

\(=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{1009.1009}\)

\(=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1009^2}=\frac{1}{2^2}+\left(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1009^2}\right)\)

Ta có: \(\frac{1}{2^2}=\frac{1}{4}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

\(\frac{1}{4^2}< \frac{1}{3.4}\)

...........

\(\frac{1}{1009^2}< \frac{1}{1008.1009}\)

\(\Rightarrow A< \frac{1}{4}+\left(\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{1008.1009}\right)\)

\(A< \frac{1}{4}+\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{1008}-\frac{1}{1009}\right)\)

\(A< \frac{1}{4}+\left(\frac{1}{2}-\frac{1}{1009}\right)=\frac{1}{4}+\frac{1}{2}-\frac{1}{1009}=\frac{3}{4}-\frac{1}{1009}< \frac{3}{4}\)

Vậy ...

7 tháng 5 2017

Đặt tổng đã cho là A

\(\frac{1}{1+3}=\frac{1}{\left(3+1\right)x2:2}=\frac{1}{2x4:2}=\frac{1}{2x4}x2=\frac{2}{2x4}\)=\(\frac{1}{2x2}\)

\(\frac{1}{1+3+5}=\frac{1}{\left(1+5\right)x3:2}=\frac{1}{3x6}x2=\frac{2}{3x6}\)=\(\frac{1}{3x3}\)

\(\frac{1}{1+3+5+....+2017}=\frac{1}{\left(1+2017\right)x1009:2}=\frac{1}{1009x2018}x2=\frac{2}{1009x2018}\)=\(\frac{1}{1009x1009}\)

Các mẫu là bạn áp dụng tính tổng đó nha ( mk làm tắt)

A=\(\frac{1}{2x2}+\frac{1}{3x3}+...+\frac{1}{1009x1009}\)<\(\frac{1}{2x2}+\frac{1}{2x3}+\frac{1}{3x4}+....+\frac{1}{1008x1009}=\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{1008}-\frac{1}{1009}\)=\(\frac{1}{4}+\frac{1}{2}-\frac{1}{1009}< \frac{1}{4}+\frac{1}{2}=\frac{3}{4}\)

vậy A<3/4( Mk có làm tắt nên chỗ nào ko hiểu thì nhắn tin nha

5 tháng 5 2017

\(S=\frac{1}{1+3}+\frac{1}{1+3+5}+...+\frac{1}{1+3+5+7+...+2017}\)

\(S=\frac{1}{\left[\left(1+3\right):2\right]^2}+\frac{1}{\left[\left(1+5\right):2\right]^2}+...+\frac{1}{\left[\left(2017+1\right):2\right]^2}\)

\(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1009^2}\)

\(S< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1007.1008}\)

\(S< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1008}-\frac{1}{1009}\)

\(S< \)

Còn đâu làm nốt , tao đi ngủ đây

\(\frac{\frac{2}{3}+\frac{1}{4}-\frac{3}{5}}{\frac{2}{3}-\frac{1}{4}+\frac{3}{5}}=\frac{\frac{2}{3}+\frac{1}{4}-\frac{3}{5}}{\frac{2}{3}-\left(\frac{1}{4}-\frac{3}{5}\right)}=\frac{\frac{2}{3}-\frac{7}{20}}{\frac{2}{3}+\frac{7}{20}}=\frac{\frac{19}{60}}{\frac{61}{60}}=\frac{19}{60}\times\frac{60}{61}=\frac{19}{61}\)

~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~

 ~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~

5 tháng 8 2017

ta thấy có thể giản ước 2/3 = 2/3 ,1/4=1/4,3/5=3/5

=> phép tính trên bằng 1

15 tháng 3 2016

\(\left(-1\frac{1}{6}\right)\left(\frac{1-\frac{3}{5}+\frac{3}{11}-\frac{3}{13}}{\frac{1}{3}-\frac{1}{5}+\frac{1}{11}-\frac{1}{13}}\right)\left(\frac{4-\frac{4}{17}+\frac{4}{19}-\frac{4}{2013}}{5-\frac{5}{7}+\frac{5}{19}-\frac{5}{2013}}\right)\)

\(=-\frac{7}{6}.\left(\frac{3\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{11}-\frac{1}{13}\right)}{\frac{1}{3}-\frac{1}{5}+\frac{1}{11}-\frac{1}{13}}\right):\left(\frac{4.\left(1-\frac{1}{7}+\frac{1}{19}-\frac{1}{2013}\right)}{5.\left(1-\frac{1}{7}+\frac{1}{19}-\frac{1}{2013}\right)}\right)\)

\(=-\frac{7}{6}.3:\frac{4}{5}=-\frac{7}{2}.\frac{5}{4}=-\frac{35}{8}\)

10 tháng 3 2017

ta có biêu thức trên\(\: < \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2012.2013}\)=\(\frac{2012}{2013}< 1\)

do dó biểu thức <1

10 tháng 3 2017

Chứng minh biểu thức trên làm sao?

11 tháng 3 2017

Ta có : \(\frac{1}{2^2}< \frac{1}{1\cdot2}\)

           \(\frac{1}{3^2}< \frac{1}{2\cdot3}\)

             \(.\)                   \(.\)

             \(.\)

             \(.\)                    \(.\)  

             \(.\)                    \(.\)

         \(\frac{1}{2013^2}< \frac{1}{2012\cdot2013}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+.........+\frac{1}{2013^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+.....+\frac{1}{2012\cdot2013}\)

Mà \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+.....+\frac{1}{2012\cdot2013}=1-\frac{1}{2013}< 1\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+......+\frac{1}{2013^2}< 1\)

Nhớ k cho mình nhé!

Chúc các bạn học tốt!

10 tháng 3 2017

mình giải ở đè trước rồi