Cho A=\(\frac{12n+1}{32n+3}\)tìm n để:
a) A là một phân số
b) A là một số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,A=\dfrac{12n+1}{2n+3}\) là một phân số khi: \(12n+1\in Z,2n+3\in Z\) và \(2n+3\ne0\)
\(\Leftrightarrow n\in Z\) và \(n\ne-1,5\)
\(b,A=\dfrac{12n+1}{2n+3}=-6\dfrac{17}{2n+3}\)
A là số nguyên khi \(2n+3\inƯ\left(17\right)\Leftrightarrow2n+3\in\left\{\pm1;\pm17\right\}\)
\(\Leftrightarrow n\in\left\{-10;-2;-1;7\right\}\)
\(A=\frac{12n+1}{2n+3}=\frac{6.\left(2n+3\right)-17}{2n+3}=6-\frac{17}{2n+3}\)
để \(A\in Zthi\frac{17}{2n+3}\in Z\)
và \(17⋮2n+3\)
\(\Rightarrow2n+3\inƯ\left(17\right)=1;17;-1;-17\)
\(\Rightarrow n\in\left(-1;7;-2;-10\right)\)
Để câu trả lời của bạn nhanh chóng được duyệt và hiển thị, hãy gửi câu trả lời đầy đủ và không nên:
giúp mik nhoa mik đag cần cảm ơn những câu hỏi của tất cả các bn nhiều
Để \(A\)là số nguyên
\(\Rightarrow n-2⋮n+3\)
Mà \(n-2=n+5-3\)
\(\Rightarrow5⋮n+3\)
\(\Rightarrow n+3\inƯ\left(5\right)\)
\(\Rightarrow n+3\in\left\{-1;1;-5;5\right\}\)
\(\Rightarrow n+2\in\left\{-2;2;1;-4;4\right\}\)
a: Để A là phân số thì 2n+3<>0
hay n<>-3/2
b: Để A nguyên thì \(2n+3\in\left\{1;-1;17;-17\right\}\)
hay \(n\in\left\{-1;-2;7;-10\right\}\)
\(a,\Rightarrow2n+3\ne0\Rightarrow n\ne-\dfrac{2}{3}\\ b,A\in Z\Rightarrow A=\dfrac{6\left(2n+3\right)-17}{2n+3}=6-\dfrac{17}{2n+3}\in Z\\ \Rightarrow2n+3\inƯ\left(17\right)=\left\{-17;-1;1;17\right\}\\ \Rightarrow2n\in\left\{-20;-4;-2;14\right\}\\ \Rightarrow n\in\left\{-10;-2;-1;7\right\}\left(tm\right)\)
\(a)\) Để A là phân số thì :
\(32n+3\ne0\)\(\Rightarrow\)\(32m\ne-3\)\(\Rightarrow\)\(n\ne\frac{-3}{32}\)
vào mngk