giải phương trình với tham số m
m (mx + 1)= x (m+ 2) +2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Ta có : \(\Delta'=b'^2-ac=\left(-m\right)^2-1\cdot\left(m-2\right)=m^2-m+2\)
\(=m^2-2\cdot m\cdot\frac{1}{2}+\frac{1}{4}+\frac{7}{4}=\left(m-\frac{1}{2}\right)^2+\frac{7}{4}>0\)
Vậy pt luôn có 2 nghiệm phân biệt
2) Phương trình luôn có 2 nghiệm phân biệt :
\(\hept{\begin{cases}x_1=\frac{-b'+\sqrt{\Delta'}}{a}=\frac{m+\sqrt{\Delta'}}{1}=m+\sqrt{\Delta'}\\x_2=\frac{-b'-\sqrt{\Delta'}}{a}=\frac{m-\sqrt{\Delta'}}{1}=m-\sqrt{\Delta'}\end{cases}}\)
Theo đề bài : \(x_1-x_2=m+\sqrt{\Delta'}-m+\sqrt{\Delta'}=2\sqrt{5}\)
\(\Leftrightarrow2\sqrt{\Delta'}=2\sqrt{5}\)
\(\Leftrightarrow\sqrt{\Delta'}=\sqrt{5}\)
\(\Leftrightarrow\Delta'=5\)
\(\Leftrightarrow m^2-m+2=5\)
\(\Leftrightarrow m^2-m-3=0\)
\(\Leftrightarrow m^2-2\cdot m\cdot\frac{1}{2}+\frac{1}{4}-\frac{13}{4}=0\)
\(\Leftrightarrow\left(m-\frac{1}{2}\right)^2=\frac{13}{4}=\left(\frac{\pm\sqrt{13}}{2}\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}m=\frac{\sqrt{13}+1}{2}\\m=\frac{-\sqrt{13}+1}{2}\end{cases}}\)
Vậy....
1. Với m=5 thì (1) có dạng
\(5x^2-5x-10=0\Leftrightarrow x^2-x-2=0\\ \Leftrightarrow\left(x-2\right)\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
2. Nếu m=0 thì (1) trở thành
\(-5x-5=0\Leftrightarrow x=-1\)
Nếu m khác 0 , coi (1) là phương trình bậc 2 ẩn x, ta có:
\(\text{Δ}=\left(-5\right)^2-4\cdot m\cdot\left(-m-5\right)=4m^2+20m+25=\left(2m+5\right) ^2\ge0\)
Nên phương trình (1) luôn có nghiệm với mọi m
a. Bạn tự giải
b.
Với \(m=0\) pt có nghiệm \(x=-1\) (thỏa mãn)
Với \(m\ne0\)
\(\Delta=25+4m\left(m+5\right)=4m^2+20m+25=\left(2m+5\right)^2\ge0\) ; \(\forall m\)
\(\Rightarrow\) Pt đã cho luôn có nghiệm với mọi m
a: Thay m=-1 vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}x-y=3\cdot\left(-1\right)=-3\\-x-y=\left(-1\right)^2-2=-3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-2y=-6\\x-y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=y-3=3-3=0\end{matrix}\right.\)
• PT có nghiệm duy nhất \( \Leftrightarrow \dfrac{1}{m} \ne \dfrac{-2}{1} \Leftrightarrow m \ne \dfrac{-1}{2}\)
• PT vô nghiệm \(\Leftrightarrow \dfrac{1}{m} =\dfrac{-2}{1} \ne \dfrac{1}{2} \Leftrightarrow m=\dfrac{-1}{2}\)
• PT có vô số nghiệm \(\Leftrightarrow \dfrac{1}{m} = \dfrac{-2}{1} = \dfrac{1}{2} (\text{Vô lý})\)
Vậy....
a, tại m=2 thì hệ tương đương với\(\hept{\begin{cases}x+2y=2\\2x-y=2\end{cases}\Leftrightarrow\hept{\begin{cases}x+2y=2\\4x-2y=4\end{cases}\Leftrightarrow\hept{\begin{cases}x+2y=2\\5x=6\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{6}{5}\\y=\frac{2}{5}\end{cases}}}} }\)
b, do thay (x,y)=(2,-1) vào phương trình x+2y=2 không thỏa mãn nên hệ phương trình không nhận cặp (x,y)=(2,-1) là nghiệm
a: Khi m=5 thì (1) sẽ là: x^2+5x+4=0
=>x=-1; x=-4
b: Sửa đề: Q=x1^2+x2^2-4x1-4x2
Q=(x1+x2)^2-2x1x2-4(x1+x2)
=m^2-2(m-1)-4(-m)
=m^2-2m+2+4m
=m^2+2m+2=(m+1)^2+1>=1
Dấu = xảy ra khi m=-1
Ta có;\(m^2x+m-xm-2x-2=0\Leftrightarrow\left(m^2-m-2\right)x+m-2=0\)
Nếu \(m=-1\Rightarrow x=\varnothing\);\(m=2\Rightarrow x\inℝ\)
Với\(m\ne\left\{-1;2\right\}\Rightarrow x=\frac{2-m}{m^2-m-2}\)