Cho tam giác ABC nhọn nội tiếp đường tròn (O; R), Ba đường cao AD, BE, CF của tam giác ABC cùng đi qua trực tâm 11. Kẻ đường kính AK của đường tròn (O; R). Gọi M là hình chiếu vuông góc của C trên AK. 1) Chứng minh tứ giác BFEC nội tiếp được đường tròn. 2) Chứng minh AB. AC = 2RAD và MD || BK. 3) Giả sử BC là dây cung cố định của đường tròn (O; R) và A di động trên cung lớn BC. Tìm vị trí điểm...
Đọc tiếp
Cho tam giác ABC nhọn nội tiếp đường tròn (O; R), Ba đường cao AD, BE, CF của tam giác ABC cùng đi qua trực tâm 11. Kẻ đường kính AK của đường tròn (O; R). Gọi M là hình chiếu vuông góc của C trên AK. 1) Chứng minh tứ giác BFEC nội tiếp được đường tròn. 2) Chứng minh AB. AC = 2RAD và MD || BK. 3) Giả sử BC là dây cung cố định của đường tròn (O; R) và A di động trên cung lớn BC. Tìm vị trí điểm A để diện tích tam giác AEH lớn nhất Bài V(0,5 điểm):