tìm x,y thuộc z , biêt :
7y-5x=xy=24
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y\left(7+x\right)-5x=24\)
\(y\left(x+7\right)-5\left(x+7\right)=24-35\)
\(\left(x+7\right)\left(y-5\right)=-11\)
\(\left\{{}\begin{matrix}x+7=\left\{-11;-1;1;11\right\}\\y-5=\left\{1;11;-11;-1\right\}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x=\left\{-18;-8;-6;4\right\}\\y=\left\{6;16;-6;4\right\}\end{matrix}\right.\) (x;y)=\(\left(-18;6\right);\left(-8;16\right);\left(-6;-6\right);\left(4;4\right)\)
Ta có
\(xy-7y+5x=0\)
\(\Leftrightarrow y=\frac{5x}{7-x}=-5+\frac{35}{7-x}\ge3\)
\(\Leftrightarrow\frac{35}{7-x}\ge8\Leftrightarrow7-x\le4\)
Vậy ta sẽ tìm x sao cho 7 - x là ước của 35 và \(0< 7-x\le4\)
\(\Rightarrow7-x=1\)
\(\Rightarrow x=6\Rightarrow y=30\)
a)
\(5x=7y\Rightarrow\frac{x}{7}=\frac{y}{5}\) và x+2y=51
áp dụng t/c dãy tỷ số = nhau ta có:
\(\frac{x}{7}=\frac{y}{5}=\frac{x+2y}{7+10}=\frac{51}{17}=3\)
\(\Rightarrow\frac{x}{7}=3\Rightarrow x=3.7=21\)
\(\Rightarrow\frac{y}{5}=3\Rightarrow y=3.5=15\)
7y-5x+xy=24 nhé