K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2018

\(a+b+c\ge3\sqrt[3]{3}\) 

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)

Nhân 2 vế ta được: \(\left(a+b+c\right).\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)

Vậy \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\left(đpcm\right)\)

10 tháng 3 2018

 Nhân 2 vế vs a b c , xog r nhân hết ra pên vế traj ,

xog lấy tử chja mẫu sẽ đc 3 a/b b a c/b b/c a/c c/a ,

từg kặp số trên >=2 ,

cộg vao pag 3 2.3=9

11 tháng 3 2018

Vân dụng bất đẳng thức \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)

\(\Rightarrow\frac{1}{a+3b}+\frac{1}{b+2c+a}\ge\frac{4}{\left(a+3b\right)+\left(b+2c+a\right)}=\frac{2}{a+2b+c}\)

\(\Rightarrow\frac{1}{b+3c}+\frac{1}{c+2a+b}\ge\frac{4}{\left(b+3c\right)+\left(c+2b+a\right)}=\frac{2}{b+2c+a}\)

\(\Rightarrow\frac{1}{c+3a}+\frac{1}{a+2b+c}\ge\frac{4}{\left(c+3a\right)+\left(a+2b+c\right)}=\frac{2}{c+2a+b}\)

Cộng tất cả các vế bất đẳng thức trên và rút gọn ta có bất đẳng thức \(\frac{1}{a+2b+c}+\frac{1}{b+2c+a}+\frac{1}{c+2a+b}\le\frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a}\)

Đẳng thức xảy ra khi: \(\hept{\begin{cases}a+3b=b+2c+a\\b+3c=c+2a+b\Leftrightarrow a=b=c\\c+3a=a+2b+c\end{cases}}\)

11 tháng 3 2018

Ta áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

Áp dụng vào bài toán ta có : 

\(\frac{1}{a+3b}+\frac{1}{a+b+2c}\ge\frac{4}{a+3b+a+b+2c}=\frac{4}{2a+4b+2c}=\frac{2}{a+2b+c}\)

\(\frac{1}{b+3c}+\frac{1}{2a+b+c}\ge\frac{4}{b+3c+2a+b+c}=\frac{4}{2a+2b+4c}=\frac{2}{a+b+2c}\)

\(\frac{1}{c+3a}+\frac{1}{a+2b+c}\ge\frac{4}{c+3a+a+2b+c}=\frac{4}{4a+2b+2c}=\frac{2}{2a+b+c}\)

Cộng vế theo vế của bất đẳng thức ta được 

\(\frac{1}{a+2b+c}+\frac{1}{b+2c+a}+\frac{1}{c+2a+b}\ge\frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a}\)

=> ĐPCM

30 tháng 4 2017

câu b đúng

30 tháng 4 2017

b. 1m = 0,1 dam

14 tháng 1 2020

\(VT-VP=\Sigma_{cyc}\frac{2a+b+c}{a^2b\left(a+b+c\right)}\left(a-b\right)^2\ge0\)

hay \(\frac{a}{c^2}+\frac{1}{a}\ge\frac{2}{c}\)\(\Leftrightarrow\)\(\frac{a}{c^2}\ge\frac{2}{c}-\frac{1}{a}\)\(\Rightarrow\)\(VT\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)

"=" \(\Leftrightarrow\)\(a=b=c\)

24 tháng 6 2019

Ta có: \(\frac{ab+c}{c+1}=\frac{ab+1-a-b}{c+a+b+c}=\frac{-b\left(1-a\right)+\left(1-a\right)}{\left(a+c\right)+\left(b+c\right)}\)

\(=\frac{\left(1-a\right)\left(1-b\right)}{\left(a+c\right)+\left(b+c\right)}=\frac{\left(b+c\right)\left(a+c\right)}{\left(a+c\right)+\left(b+c\right)}\)

\(\le\frac{1}{4}\left(\frac{\left(b+c\right)\left(a+c\right)}{a+c}+\frac{\left(b+c\right)\left(a+c\right)}{b+c}\right)=\frac{a+b+2c}{4}\)

Tương tự: \(\frac{bc+a}{a+1}=\frac{b+c+2a}{4}\)

\(\frac{ca+b}{b+1}=\frac{c+a+2b}{4}\)

Cộng vế theo vế ta có: 

\(\frac{ab+c}{c+1}+\frac{bc+a}{a+1}+\frac{ca+b}{b+1}\le\frac{4a+4b+4c}{4}=a+b+c=1\)

24 tháng 6 2019

Thiếu: 

Dấu "=" xảy ra khi và chỉ khi:

\(\frac{1}{a+b}=\frac{1}{a+c};\frac{1}{a+c}=\frac{1}{b+c};\frac{1}{b+c}=\frac{1}{b+a};a+b+c=1\)

<=> a=b=c=1/3

9 tháng 8 2017

Ta có :

\(A+3=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}+3\)

\(=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{a+c}+1\right)+\left(\frac{c}{a+b}+1\right)\)

\(=\frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}+\frac{a+b+c}{a+b}\)

\(=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)\)

\(=2017.\frac{1}{2017}=1\)

\(\Rightarrow A=1-3=-2\)

14 tháng 1 2017

Bài 1 :

\(a,\left(a-b\right)+\left(c-d\right)-\left(a-c\right)=-\left(b+d\right)\)

Ta có : \(VT=\left(a-b\right)+\left(c-d\right)-\left(a-c\right)\)

                 \(=a-b+c-d-a+c\)

                 \(=-\left(b+d\right)=VP\)

\(\Rightarrow\left(a-b\right)+\left(c-d\right)-\left(a-c\right)=-\left(b+d\right)\)

\(b,\left(a-b\right)-\left(c-d\right)+\left(b+c\right)=a+d\)

Ta có : \(VT=\left(a-b\right)-\left(c-d\right)+\left(b+c\right)\)

                 \(=a-b-c+d+b+c\)

                 \(=a+d=VP\)

\(\Rightarrow\left(a-b\right)-\left(c-d\right)+\left(b+c\right)=a+d\)