Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng BĐT côsi ta có:\(\frac{a}{b}+\frac{b}{a}>=2\cdot\sqrt[2]{\frac{a}{b}\cdot\frac{b}{a}}=2\)
b)bạn nhân hết ra rồi áp dụng BĐT cối là được!!!!
\(\left\{{}\begin{matrix}ab+bc+ca=abc\\a+b+c=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}abc-ab-bc-ca=0\\a+b+c-1=0\end{matrix}\right.\)
\(\left(a-1\right)\left(b-1\right)\left(c-1\right)=\left(a-1\right)\left(bc-b-c+1\right)\)
\(=abc-ab-ac+a-bc+b+c-1\)
\(=\left(abc-ab-bc-ca\right)+\left(a+b+c-1\right)\)
\(=0+0=0\) (ddpcm)
\(VT=\left(a-1\right)\left(b-1\right)\left(c-1\right)\\ =\left(ab-a-b+1\right)\left(c-1\right)\\ =abc-ab-ac+a-bc+b+c-1\\ =abc-\left(ab+bc+ca\right)+\left(a+b+c\right)-1\\ =abc-abc+1-1=0=VP\)
a) Áp dụng BĐT Svácxơ, ta có:
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{\left(1+1+1\right)^2}{a+b+c}=\dfrac{9}{6}=\dfrac{3}{2}\)
Dấu "=" \(\Leftrightarrow a=b=c=2\)
Vì \(a^2+b^2\ge2ab,b^2+1\ge2b\),ta có:
\(\frac{1}{a^2+2b^2+3}=\frac{1}{a^2+b^2+b^2+1+1}\le\frac{1}{2\left(ab+b+1\right)}\)
Tương tự:\(\frac{1}{b^2+2c^2+3}\le\frac{1}{2\left(bc+c+1\right)}\)và \(\frac{1}{b^2+2c^2+3}\le\frac{1}{2\left(bc+c+1\right)}\)
Khi đó\(A\le\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+a}\right)\)
\(\Leftrightarrow A\le\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{ab}{ab+b+1}+\frac{b}{ab+b+1}\right)=\frac{1}{2}\)
Dấu"="trg BĐT trên xảy ra khi \(a=b=c=1\)
Vậy \(Max_P=\frac{1}{2}\Leftrightarrow a=b=c=1\)
Chắc không được GP đâu !!
Áp dụng bđt cauchy , ta có :
+) \(a^2+2b^2+3=\left(a^2+b^2\right)+\left(b^2+1\right)+2\ge2ab+2b+2\)
+) \(b^2+2c^2+3\ge2bc+2c+2\)
+) \(c^2+2a^2+3\ge2ac+2a+2\)
Khi đó , ta có :
\(VT\le\frac{1}{2ab+2b+2}+\frac{1}{2bc+2c+2}+\frac{1}{2ac+2a+2}\)
\(=\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ac+a+1}\right)\)
\(=\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{abc}{bc+c+1}+\frac{abc}{ac+a+1}\right)\)( vì abc= 1 )
\(=\frac{1}{2}=VP\)( đoạn này ban tự phân tích ra nha , mk lmaf hơi tắt )
Vậy .................
sr tui ko có câu hỏi tương tự tui chỉ có câu hỏi y hệt thôi Xem câu hỏi
Lời giải:
a. Áp dụng BĐT Cô-si:
$\frac{1}{a}+\frac{a}{4}\geq 1$
$\frac{1}{b}+\frac{b}{4}\geq 1$
$\frac{1}{c}+\frac{c}{4}\geq 1$
Cộng theo vế:
$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{a+b+c}{4}\geq 3$
$\Leftrightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{6}{4}\geq 3$
$\Leftrightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}\geq \frac{3}{2}$ (đpcm)
Dấu "=" xảy ra khi $a=b=c=2$
b.
Áp dụng BĐT Cô-si:
$\frac{a^2}{c}+c\geq 2a$
$\frac{b^2}{a}+a\geq 2b$
$\frac{c^2}{b}+b\geq 2c$
$\Rightarrow \frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}+(c+a+b)\geq 2(a+b+c)$
$\Rightarrow \frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\geq a+b+c=6$ (đpcm)
Dấu "=" xảy ra khi $a=b=c=2$