Bạn nào giải hộ tớ bài này với. Các bạn giải rõ ra nhé. mình cảm ơn.
a)tìm số nguyên x sao cho (x^2 + 2) . (x^2 + 9) < 0+3.
b) chứng tỏ rằng \(\frac{42n+4}{30n+2}\)là phân số tối giản( \(n\varepsilon N\))
MK CẢM ƠN.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có \(\frac{\left(x^2+2\right)}{\left(x^2+9\right)}\)
Tách tử \(\frac{\left(x^2+9-7\right)}{\left(x^2+9\right)}=1-\frac{7}{\left(x^2+9\right)}\)
Mà \(1-\frac{7}{\left(x^2+9\right)}\)là số nguyên
=> \(\frac{7}{\left(x^2+9\right)}\)là 1 số nguyên
=> 7 chia hết cho (x2+9)
=> (x2+9) thuộc Ư(7)\(=\left\{\pm1;\pm7\right\}\)
Từ đó, ta lập bảng
Khúc này tự làm ( khi bn đánh đề thì bn đánh cho rõ vô, chứ mk nhìn k hiểu)
b) Gọi d là ƯC(42n+4;30n+2)
=> 42n+4 chia hết cho d => 210n+20 chia hết cho d
=> 30n+2 chia hết cho d => 210n+14 chia hết cho d
=> [(210n+20)-(210n+14)] chia hết cho d
=> 6 chia hết cho d => d=6
Vì ƯC(42n+4;30n+2)=6 => \(\frac{42n+4}{30n+2}\)chưa là ps tối giản ( bn xem lại đề chứ 42n+4/30n+2 còn rút gọn dc nx nhs bn)
thì nó đã là 1 phân số tối giản rồi thì chứng minh làm gì nữa
Gọi UCLN ( n+ 1 ; n+ 2 ) = d ( d : hết cho 1 )
=> n+ 1 chia hết cho d (1)
=> n +2 chia hết cho d (2)
Từ (1) và (2) => n+ 2 - ( n+ 1) chia hết cho d
=> n+ 2 - n - 1 chia hết cho d
=> 1 chia hết cho d
mà 1 lại chia hết cho d
=> d = 1
=> UCLN(n+1;n+2) = 1
=> n+1/n+2 là p/s tối giản
Ta có:
\(VT=1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}\)
\(=\frac{n^2\left(n+1\right)^2}{n^2\left(n+1\right)^2}+\frac{\left(n+1\right)^2}{n^2\left(n+1\right)^2}+\frac{n^2}{n^2\left(n+1\right)^2}\)
\(=\frac{n^2\left(n+1\right)^2+\left(n+1\right)^2+n^2}{n^2\left(n+1\right)^2}\)
\(=\frac{\left[n\left(n+1\right)\right]^2+\left(n+1\right)^2+n^2}{n^2\left(n+1\right)^2}\)
\(=\frac{\left[n\left(n+1\right)\right]^2+n^2+2n+1+n^2}{n^2\left(n+1\right)}\left(1\right)\)
\(VP=\frac{\left(n^2+n+1\right)}{n^2\left(n+1\right)^2}\)
\(=\frac{\left[n\left(n+1\right)+1\right]^2}{n^2\left(n+1\right)^2}\)
\(=\frac{\left[n\left(n+1\right)\right]^2+1+2\left[n\left(n+1\right)\right]}{n^2\left(n+1\right)^2}\)
\(=\frac{\left[n\left(n+1\right)\right]^2+1+2\left(n^2+1\right)}{n^2\left(n+1\right)^2}\)
\(=\frac{\left[n\left(n+1\right)\right]^2+1+2n^2+2n}{n^2\left(n+1\right)^2}\)
\(=\frac{\left[n\left(n+1\right)\right]^2+2n+1+2n^2}{n^2\left(n+1\right)^2}\left(2\right)\)
Từ (1) và (2)
=>đpcm
Vì \(\sqrt{x}\)là một số hữu tỉ
\(\Rightarrow\sqrt{x}\)có dạng \(\frac{a}{b}\)(\(\frac{a}{b}\)là một phân số tối giản)
Vì \(\sqrt{x}\ge0\)và theo đề bài \(\frac{a}{b}\ne0\Rightarrow\frac{a}{b}\ge0\)
\(\Rightarrow a,b\)là những số nguyên dương (1)
Vì \(\sqrt{x}\)có dạng \(\frac{a}{b}\Rightarrow\left(\sqrt{x}\right)^2=\left(\frac{a}{b}\right)^2\Rightarrow x=\frac{a^2}{b^2}\)(2)
Vì \(\frac{a}{b}\)là phân số tối giản
\(\Rightarrow a,b\)là hai số nguyên tố cùng nhau
\(\Rightarrow\)ƯCLN(a,b)=1
Vì \(a^2\) có Ư(a), \(b^2\)có Ư(b)
\(\Rightarrow a^2,b^2\) là hai số nguyên tố cùng nhau
\(\Rightarrow\)ƯCLN(\(a^2,b^2\))=1
\(\Rightarrow\frac{a^2}{b^2}\) là phân số tối giản (3)
Từ (1), (2) và (3)
=>đpcm
Để \(\frac{12n+1}{30n+2}\)là phân số tối giản thì \(\left(12n+1,30n+2\right)=1\).
Đặt \(d=\left(12n+1,30n+2\right)\).
Ta có:
\(\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}5\left(12n+1\right)⋮d\\2\left(30n+2\right)⋮d\end{cases}}\Rightarrow5\left(12n+1\right)-2\left(30n+2\right)=1⋮d\)
Suy ra \(d=1\).
Do đó ta có đpcm.
Câu a sai đề hay sao ấy
b) Không tối giản đâu nhé, cả tử và mẫu đều chia hết cho 2
bạn ơi nhưng cô giáo cho đề mk thế. bạn giải giùm mk với mai mk phải nộp rồi.