Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a sai đề hay sao ấy
b) Không tối giản đâu nhé, cả tử và mẫu đều chia hết cho 2
bạn ơi nhưng cô giáo cho đề mk thế. bạn giải giùm mk với mai mk phải nộp rồi.
HKC_MMS ٩(͡๏̮͡๏)۶:Nói câu gì cho ngầu đây trời?? "Swag" ❁◕ ‿ ◕❁ Chúc mừng năm mới! https://olm.vn/thanhvien/chaukhanhho Đứa nào giả mạo t thì bớt bớt lại nhá! mk nhanh nè! tk đi
gọi d là ƯCLN( 12n+1; 30n+2)
ta có: (12n +1) chia hết d
(30n+2) chia hết d
>5(12n+1)chia hết d
2(30n+2)chia hết d
>60n+5chia hết d
60n+4chia hết d
>((60n+5)-(60n+4)) chia hếtd
>1 chia hết d
>d thuộc (1)
vậy, ......
2:
a: Gọi d=ƯCLN(4n+7;2n+3)
=>\(\left\{{}\begin{matrix}4n+7⋮d\\2n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4n+7⋮d\\4n+6⋮d\end{matrix}\right.\Leftrightarrow1⋮d\)
=>d=1
=>ƯCLN(4n+7;2n+3)=1
b: Gọi \(d=ƯCLN\left(3n+5;6n+9\right)\)
=>\(\left\{{}\begin{matrix}3n+5⋮d\\6n+9⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6n+10⋮d\\6n+9⋮d\end{matrix}\right.\)
=>\(1⋮d\)
=>d=1
=>Đây là phân số tối giản
1, 4n-5 chia hết cho 20-1
=>4n-5 chia hết cho 19
=> 4n-5 thuộc B(19)
=> 4n-5 = 19k
=> 4n = 19k + 5
=> n = \(\frac{19k+5}{4}\)
2, (2x+1)(y-5) = 12
=> 2x+1 và y-5 thuộc Ư(12)
Từ đây xét các trường hợp của 2x+1 và y-5 là ra
Gọi ƯCLN(12n+1; 30n+2) là d. Ta có:
12n+1 chie hết cho d => 60n+5 chia hết cho d
30n+2 chia hết cho d => 60n+4 chia hết cho d
=> 60n+5-(60n+4) chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> ƯCLN(12n+1; 30n+2) = 1
=> \(\frac{12n+1}{30n+2}\)tối giản (Đpcm)
1)4n-5 chia hết cho 20-1
=>4n-5 chia hết cho 19 hay 4n-5 thuộc B(19)={...;-19;0;19;38;..}
=>4n thuộc{...;-14;5;24;43;...}
=>n thuộc{...;6;...}
2)Ta có: (2x+1)(y-5)=12
=>
2x+1 | 1 | 2 | 3 | 4 | 6 | 12 |
2x | 0 | 1 | 2 | 3 | 5 | 11 |
x | 0 | 1 | ||||
y-5 | 12 | 4 | ||||
y | 17 | 9 |
3)Gọi ƯCLN(12n+1;30n+2)=d
Ta có: 12n+1 chia hết cho d; 30n+2 chia hết cho d
=>5(12n+1)chia hết cho d; 2(30n+2) chia hết cho d
=>60n+5 chia hết cho d; 60n+4 chia hết cho d
=>60n+5-(60n+4)chia hết cho d
60n+5-60n-4 chia hết cho d
=>1 chia hết cho d hay d=1
=>ƯCLN(12n+1;30n+2)=1
=>đpcm
a ) Gọi d là ƯC ( 15n + 1 ; 30n + 1 )
=> 15n + 1 ⋮ d => 2.( 15n + 1 ) ⋮ d => 30n + 2 ⋮ d
=> 30n + 1 ⋮ d => 1.( 30n + 1 ) ⋮ d => 30n + 1 ⋮ d
=> [ ( 30n + 2 ) - ( 30n + 1 ) ] ⋮ d
=> 1 ⋮ d => d = 1
Vì ƯC ( 15n + 1 ; 30n + 1 ) = 1 nên 15n+1/30n+1 là p/s tối giản
a)Gọi ước chung lớn nhất của 15n + 1 và 30n + 1 là d (d thuộc N*)
=> 15n + 1 chia hết cho d
30n + 1 chia hết cho d
=> 2(15n + 1) chia hết cho d
1(30n + 1) chia hết cho d
=> 30n + 2 chia hết cho d
30n + 1 chia hết cho d
=>(30n + 2) - (30n + 1) chia hết cho d
=> 1 chia hết cho d
Do d thuộc N*
=> d=1
=>Ước chung lớn nhất của 15n + 1 và 30n + 1 là 1
=> 15n +1 và 30n + 1 là 2 số nguyên tố cùng nhau
=>15n + 1/30n + 1 là phân số tối giản với n thuộc N (điều phải chứng minh)
Cho mình 5* pn nké.Hì.Thân.Chúc học giỏi
n+2 E Ư(6)
mà Ư(6)={-1;1;2;-2;3;-3;6;-6}
=>nE{-3;-1;0;-4;1;-5;4;-8}
vậy........
bạn ơi do mik khá lười nên nhờ một bạn giải hộ và vì mik có vip lên CTV ưu tiên trả lời trc
https://olm.vn/hoi-dap/question/1262559.html?pos=4754416
vào đây tham khảo nhé
mà nếu có bài gì thì kb với mik nha
Gọi d là UCLN của 12n +1/ 30n+2
=> 12n + 1 chia hết cho d; 30n + 2 chia hết cho d
=> 5.(12n + 1) chia hết cho d; 2.(30n + 2) chia hết cho d
=> 60n + 5 chia hết cho d; 60n + 4 chia hết cho d
=>(60n + 5) - (60n + 4) chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> giả sử đầu bài đúng
=> phân số 12n+1/30n+2 là phân số tối giản (n thuộc N)
Gọi d là ƯC(12n + 1 ; 30n + 2)
\(\Rightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}\Rightarrow}\hept{\begin{cases}5\left(12n+1\right)⋮d\\2\left(30n+2\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\)
=> 60n + 5 - 60n + 4 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> ƯCLN(12n + 1; 30n + 2) = 1
=> \(\frac{12n+1}{30n+2}\)tối giản ( đpcm )_
a) ta có \(\frac{\left(x^2+2\right)}{\left(x^2+9\right)}\)
Tách tử \(\frac{\left(x^2+9-7\right)}{\left(x^2+9\right)}=1-\frac{7}{\left(x^2+9\right)}\)
Mà \(1-\frac{7}{\left(x^2+9\right)}\)là số nguyên
=> \(\frac{7}{\left(x^2+9\right)}\)là 1 số nguyên
=> 7 chia hết cho (x2+9)
=> (x2+9) thuộc Ư(7)\(=\left\{\pm1;\pm7\right\}\)
Từ đó, ta lập bảng
Khúc này tự làm ( khi bn đánh đề thì bn đánh cho rõ vô, chứ mk nhìn k hiểu)
b) Gọi d là ƯC(42n+4;30n+2)
=> 42n+4 chia hết cho d => 210n+20 chia hết cho d
=> 30n+2 chia hết cho d => 210n+14 chia hết cho d
=> [(210n+20)-(210n+14)] chia hết cho d
=> 6 chia hết cho d => d=6
Vì ƯC(42n+4;30n+2)=6 => \(\frac{42n+4}{30n+2}\)chưa là ps tối giản ( bn xem lại đề chứ 42n+4/30n+2 còn rút gọn dc nx nhs bn)