K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2019

cái này cũng là đè bài ak bạn

4 tháng 8 2019

Tinh nhanh:

0,12.90-110.0,6+36-25.6

a. Tại x=\(\frac{-1}{2}\), ta có:

 \(\left(\frac{-1}{2}\right)^2+4.\left(\frac{-1}{2}\right)+3=\frac{1}{4}+\left(-2\right)+3=\frac{5}{4}\)

b. Ta có:

 \(x^2+4x+3=0\)

\(\Rightarrow x^2+x+3x+3=0\)

\(\Rightarrow\left(x^2+x\right)+\left(3x+3\right)=0\)

\(\Rightarrow x\left(x+1\right)+3\left(x+1\right)=0\)

\(\Rightarrow\left(x+1\right)\left(x+3\right)=0\)

\(\Rightarrow\hept{\begin{cases}x+1=0\\x+3=0\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\x=-3\end{cases}}}\)

Vậy \(x=-1;x=-3\)

1 tháng 10 2017

Câu 1: Ta có: A = \(x^3+y^3+3xy=x^3+y^3+3xy\times1=x^3+y^3+3xy\left(x+y\right)\)

\(=\left(x+y\right)^3=1^3=1\)

Câu 2: Ta có: \(B=x^3-y^3-3xy=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)

\(=x^2+xy+y^2-3xy=x^2-2xy+y^2=\left(x-y\right)^2=1^2=1\)

Câu 3: Ta có: \(C=x^3+y^3+3xy\left(x^2+y^2\right)-6x^2.y^2\left(x+y\right)\)

\(=x^3+y^3+3xy\left(x^2+2xy+y^2-2xy\right)+6x^2y^2\)

\(=x^3+y^3+3xy\left(x+y\right)^2-3xy.2xy+6x^2y^2\)

\(=x^3+y^3+3xy.1-6x^2y^2+6x^2y^3\)

\(=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)^3=1^3=1\)

7 tháng 2 2021

Ta có a + b = 3

=> (a + b)2 = 9

=> a2 + 2ab + b2 = 9

=> a2 + b2 = 5 (ab = 2)

Khi a2 + b2 = 5 => a2 - 2ab + b2 = 1

=> (a - b)2 = 1

=> a - b = \(\pm1\)

Đặt A \(\frac{1}{a^3}-\frac{1}{b^3}=\frac{b^3-a^3}{\left(a.b\right)^3}=\frac{\left(b-a\right)\left(b^2+ab+a^2\right)}{\left(ab\right)^3}=-\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{\left(ab\right)^3}\)

Với  a - b = 1 ; ab = 2 ; a2 + b2 = 5 ta có A = \(-\frac{1.\left(5+2\right)}{2^3}=-\frac{7}{8}\)

Với a - b = - 1 ; ab = 2 ; a2 + b2 = 5 ta có A = \(-\frac{\left(-1\right).\left(5+2\right)}{2^3}=\frac{7}{8}\)

7 tháng 2 2021

Ta có: \(\hept{\begin{cases}a+b=3\\ab=2\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(a+b\right)^2=9\\ab=2\end{cases}\Leftrightarrow}\hept{\begin{cases}a^2+2ab+b^2=9\\ab=2\end{cases}}\Leftrightarrow\hept{\begin{cases}a^2+b^2=5\\ab=2\end{cases}}\)

Khi đó: \(\frac{1}{a^3}-\frac{1}{b^3}=\frac{b^3-a^3}{a^3b^3}=\frac{\left(b-a\right)\left(a^2+ab+b^2\right)}{8}=\frac{7\left(b-a\right)}{8}\)

Ta có: \(a+b=3\Rightarrow a=3-b\) thay vào: \(\left(3-b\right)b=2\)

\(\Leftrightarrow b^2-3b+2=0\Leftrightarrow\left(b-1\right)\left(b-2\right)=0\Leftrightarrow\orbr{\begin{cases}b=1\Rightarrow a=2\\b=2\Rightarrow a=1\end{cases}}\)

Nếu \(\hept{\begin{cases}a=2\\b=1\end{cases}\Rightarrow}\frac{1}{a^3}-\frac{1}{b^3}=-\frac{7}{8}\)

Nếu \(\hept{\begin{cases}a=1\\b=2\end{cases}}\Rightarrow\frac{1}{a^3}-\frac{1}{b^3}=\frac{7}{8}\)

22 tháng 4 2017

\(\frac{31}{20}\)đáp số đúng 1000000000000000000000000000000000000000000000000000% đó nha

h and kb nhé

23 tháng 4 2017

31/20

18 tháng 3 2017

=(a+b)+(a+b)+(a+b)+(a+b)+(a+b)

=(a+b)*5

=105*5

=525

18 tháng 3 2017

cam on bn nhiu

23 tháng 11 2019

căn bậc hai không có số âm

\(\sqrt{-1}\) đó

23 tháng 11 2019

√x-1 nha bn

24 tháng 11 2019

a. A có nghĩa khi \(\left\{{}\begin{matrix}x\ge0\\\sqrt{x}-1\ne\\\frac{x+\sqrt{x}}{\sqrt{x}+1}\ne0\end{matrix}\right.0\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

A\(=\frac{x-\sqrt{x}+\sqrt{x}-1}{\sqrt{x}-1}.\frac{\sqrt{x}+1}{x+\sqrt{x}}\)\(=\frac{x-1}{\sqrt{x}-1}.\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}.\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}}\)

b. \(x=7+4\sqrt{3}\Rightarrow\)A = \(\frac{\sqrt{7+4\sqrt{3}}+1}{\sqrt{7+4\sqrt{3}}}=\frac{\sqrt{\left(2+\sqrt{3}\right)^2}+1}{\sqrt{\left(2+\sqrt{3}\right)^2}}=\frac{3+\sqrt{3}}{2+\sqrt{3}}\)

24 tháng 11 2019

cam on bn