K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

Nhìn vào đồ thị, ta thấy:

a) Hàm số \(y =  - 2x + 1\)nghịch biến trên \(\mathbb{R}\)

b) Hàm số \(y =  - \frac{1}{2}{x^2}\) đồng biến trên khoảng \(\left( { - \infty ;0} \right)\); nghịch biến trên khoảng \(\left( {0; + \infty } \right)\)

loading...

Tọa độ đỉnh là I(1;1)

mà a=1>0

nên hàm số đồng biến khi \(x\in\left(1;+\infty\right)\) và nghịch biến khi \(x\in\left(-\infty;1\right)\)

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

Vẽ đồ thị \(y = 3x + 1;y =  - 2{x^2}\)

a) Trên \(\mathbb{R}\), đồ thị \(y = 3x + 1\) đi lên từ trái sang phải, như vậy hàm số \(y = 3x + 1\) đồng biến trên \(\mathbb{R}\)

b) Trên khoảng \(\left( { - \infty ;0} \right)\), đồ thị \(y =  - 2{x^2}\)đi lên từ trái sang phải với mọi \(x \in \left( { - \infty ;0} \right)\) , như vậy hàm số đồng biến trên \(\left( { - \infty ;0} \right)\)

Trên khoảng \(\left( {0; + \infty } \right)\), đồ thị \(y =  - 2{x^2}\)đi xuống từ trái sang phải với mọi \(x \in \left( {0; + \infty } \right)\) , như vậy hàm số nghịch biến trên \(\left( {0; + \infty } \right)\)

10 tháng 11 2017

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

Từ đồ thị hàm số ta thấy khi x tăng từ -3 đến -1 và từ -1 đến 0 thì đồ thị đi lên nên hàm số đồng biến trên các khoảng (-3;-1) và (-1;0).

Khi x tăng từ 0 đến 2 thì đồ thị đi xuống nên hàm số nghịch biến trên (0;2).

30 tháng 12 2022

Bài 1:

Theo đề, ta có hệ:

\(\left\{{}\begin{matrix}-\dfrac{b}{2}=1\\0^2+b\cdot0+c=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-2\\c=6\end{matrix}\right.\)

Bài 2:

Tọa độ đỉnh là:

\(\left\{{}\begin{matrix}x=\dfrac{-4}{2\cdot\left(-1\right)}=2\\y=-\dfrac{4^2-4\cdot\left(-1\right)\cdot0}{4\cdot\left(-1\right)}=\dfrac{16}{4}=4\end{matrix}\right.\)

=>Hàm số đồng biến khi x<2 và nghịch biến khi x>2

2 tháng 7 2019

Đáp án D

Phương pháp: +) Khảo sát sự biến thiên của đồ thị hàm số.

+) Hàm số đạt cực trị tại điểm x = x 0 ⇔ y ' x 0 = 0 và x = x 0  được gọi là điểm cực trị.

+) Hàm số đạt cực trị tại điểm x = x 0 thì  y x 0 là giá trị cực trị.

Như vậy có 3 mệnh đề đúng.

Chú ý: Học sinh thường giá trị cực trị và

 điểm cực trị nên có thể chọn sai mệnh dề (2) đúng.

5 tháng 1 2022

+) Hệ số a: -2.

+) Hệ số b: 4.

+) Hàm số nghịch biến.

5 tháng 1 2022

a.

Hệ số a: -2

Hệ số b: 4

Do hệ số a nhỏ hơn 0 (-2<0) => Hàm số nghịch biến

b. 

undefined

5 tháng 1 2022

Hệ số a: -2. \(\Rightarrow\) Hàm số nghịch biến.

Hệ số b: 4.

 

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) Từ đồ thị ta thấy đồ thị hàm số đi lên trong khoảng \(\left( { - 1; + \infty } \right)\) nên hàm số đồng biến trong khoảng \(\left( { - 1; + \infty } \right)\). Trong khoảng \(\left( { - \infty ; - 1} \right)\)  thì hàm số nghich biến.

Bảng biến thiên:

b) Từ đồ thị ta thấy đồ thị hàm số đi lên trong khoảng \(\left( { - \infty ;1} \right)\) nên hàm số đồng biến trong khoảng \(\left( { - \infty ;1} \right)\). Trong khoảng \(\left( {1; + \infty } \right)\)  thì hàm số nghịch biến.

Bảng biến thiên: