K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2016

\(x\in\left(\infty;-\infty\right)\)

\(\frac{19x+50}{14}=\frac{9}{1}\Rightarrow\left(19x+50\right)1=14.9\)

\(\frac{\left(19x+50\right)1}{19x}=\frac{14.9}{19x}\)

 

\(\frac{19x+50}{19x}=\frac{14.19}{19x}\)

\(\Rightarrow x=4\)

29 tháng 9 2016

a, \(\left(19.x+2.5^2\right)\div14=\left(13-8\right)^2-4^2\)

\(\left(19.x+2.25\right)\div14=5^2-4^2\)

\(\left(19.x+2.25\right)\div14=25-16\)

\(\left(19.x+50\right)\div14=9\)

\(\left(19.x+50\right)=9.14\)

\(19.x+50=126\)

\(19.x=126-50\)

\(19.x=76\)

\(\Rightarrow x=76\div19\)

\(\Rightarrow x=4\)

Vậy x = 4

b, \(2.3^x=10.3^{12}+8.27^4\)

\(2.3^x=10.3^{12}+8.\left(3^3\right)^4\)

\(2.3^x=10.3^{12}+8.3^{12}\)

\(2.3^x=\left(10+8\right).3^{12}\)

\(2.3^x=18.3^{12}\)

\(2.3^x=2.3^3.3^{12}\)

\(2.3^x=2.3^{15}\)

\(\Rightarrow x=15\)

Vậy x = 15

13 tháng 12 2017

Theo đề, ta có: \(\frac{x}{2}=\frac{y}{-5}\)và \(x-y=-7\)

Theo TC dãy tỉ số bằng nhau, ta có:

\(\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2-\left(-5\right)}=\frac{-7}{7}=-1\)

\(\Leftrightarrow\hept{\begin{cases}x=-1.2=-2\\y=-1.-5=5\end{cases}}\)

13 tháng 12 2017

a.x=12 ,y=16

AH
Akai Haruma
Giáo viên
11 tháng 7 2023

Bài 1:

a. $M=x^2+4x+9=(x^2+4x+4)+5=(x+2)^2+5\geq 0+5=5$ do $(x+2)^2\geq 0$ với mọi $x$
Vậy $M_{\min}=5$. Giá trị này đạt tại $x+2=0\Leftrightarrow x=-2$
b.

$N=x^2-20x+101=(x^2-20x+10^2)+1=(x-10)^2+1\geq 1$ do $(x-10)^2\geq 0$ với mọi $x$

Vậy $N_{\min}=1$. Giá trị này đạt tại $x-10=0\Leftrightarrow x=10$

AH
Akai Haruma
Giáo viên
11 tháng 7 2023

Bài 2:

a.

$C=-y^2+6y-15$
$-C=y^2-6y+15=(y^2-6y+9)+6=(y-3)^2+6\geq 6$ (do $(y-3)^2\geq 0$ với mọi $y$)

$\Rightarrow C\leq -6$

Vậy $C_{\max}=-6$. Giá trị này đạt tại $y-3=0\Leftrightarrow y=3$
b.

$-B=x^2-9x+12=(x^2-9x+4,5^2)-8,25=(x-4,5)^2-8,25\geq -8,25$ do $(x-4,5)^2\geq 0$ với mọi $x$

$\Rightarrow B\leq 8,25$
Vậy $B_{\max}=8,25$. Giá trị này đạt tại $x-4,5=0\Leftrightarrow x=4,5$

a. ĐKXĐ: x \(\ne\pm3\)

b. M = \(\frac{3}{x-3}+\frac{6x}{x^2-9}+\frac{x}{x+3}\)

\(\frac{3\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{6x}{\left(x-3\right)\left(x+3\right)}+\frac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\)

\(\frac{3x+9+6x+x^2-3x}{\left(x-3\right)\left(x+3\right)}\) = \(\frac{9+6x+x^2}{\left(x-3\right)\left(x+3\right)}\)\(\frac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}=\frac{x+3}{x-3}\)

c. M = 0 hay \(\frac{x+3}{x-3}=0\) => x + 3 = 0 <=> x = -3 (Loại)

5 tháng 5 2021

tìm cả đk giúp mik vs

NV
5 tháng 5 2021

ĐKXĐ: \(x>0;x\ne1\)

\(A=\left(\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{2\left(\sqrt{x}+1\right)}{x\left(\sqrt{x}+1\right)}-\dfrac{2-x}{x\left(\sqrt{x}+1\right)}\right)\)

\(=\left(\dfrac{x+2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{x+2\sqrt{x}}{x\left(\sqrt{x}+1\right)}\right)\)

\(=\dfrac{\left(x+2\sqrt{x}\right).x.\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(x+2\sqrt{x}\right)}=\dfrac{x}{\sqrt{x}-1}\)

b.

\(x=4+2\sqrt{3}=\left(\sqrt{3}+1\right)^2\Rightarrow\sqrt{x}=\sqrt{3}+1\)

\(\Rightarrow A=\dfrac{4+2\sqrt{3}}{\sqrt{3}+1-1}=\dfrac{4+2\sqrt{3}}{\sqrt{3}}=\dfrac{6+4\sqrt{3}}{3}\)

c.

Để \(\sqrt{A}\) xác định \(\Rightarrow\sqrt{x}-1>0\Rightarrow x>1\)

Ta có:

\(\sqrt{A}=\sqrt{\dfrac{x}{\sqrt{x}-1}}=\sqrt{\dfrac{x}{\sqrt{x}-1}-4+4}=\sqrt{\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}-1}+4}\ge\sqrt{4}=2\)

Dấu "=" xảy ra khi \(\sqrt{x}-2=0\Rightarrow x=4\)

28 tháng 9 2018

TỚ BIẾT LÀM BÀI NÀY NHƯNG ,TRỜI NẮNG GIÓ THỔI NHÈ NHẸ BAY HẾT CÔNG THỨC TÍNH RỒI HIHI........

1 tháng 6 2020

trùng hợp ghê ta, tớ cũng vậy đấy. quên hết rồi.

8 tháng 9 2017

1)

a)  \(M=\)\(x^2\)\(+\)\(4x\)\(+\)\(9\)

\(=\)\(x^2\)\(+\)\(2x\)\(.\)\(2\)\(+\)\(4\)\(+\)\(5\)

\(=\left(x+2\right)^2\)\(+\)\(5\)\(>;=\)\(5\)

Dấu bằng xảy ra khi x + 2 = 0

                               x      = -2

Vậy GTNN của M bằng 5 khi x = -2

b)  \(N=\)\(x^2\)\(-\)\(20x\)\(+\)\(101\)

\(=\)\(x^2\)\(-\)\(2x\)\(.\)\(10\)\(+\)\(100\)\(+\)\(1\)

\(=\)\(\left(x-10\right)^2\)\(+\)\(1\)\(>;=\)\(1\)

Dấu bằng xảy ra khi x - 10 = 0

                              x        =   10

Vậy GTNN của N bằng 1 khi x = 10

2)

a)  \(C=\)\(-y^2\)\(+\)\(6y\)\(-\)\(15\)

\(=\)\(-y^2\)\(+\)\(2y\)\(.\)\(3\)\(-\)\(9\)\(-\)\(6\)

\(=\)\(-\left(y-3\right)^2\)\(-\)\(6\)\(< ;=\)\(6\)

Dấu bằng xảy ra khi y - 3 = 0

                               y      = 3

Vậy GTLN của C bằng -6 khi y = 3

b)  \(B=\)\(-x^2\)\(+\)\(9x\)\(-\)\(12\)

\(=\)\(-x^2\)\(+\)\(2x\)\(.\)\(\frac{9}{2}\)\(-\)\(\frac{81}{4}\)\(+\)\(\frac{81}{4}\)\(-\)\(12\)

\(=\)\(-\left(x-\frac{9}{2}\right)^2\)\(+\)\(\frac{33}{4}\)\(< ;=\)\(\frac{33}{4}\)

Dấu bằng xảy ra khi  \(x-\frac{9}{2}=0\)

                                \(x=\frac{9}{2}\)

Vậy GTLN của B bằng  \(\frac{33}{4}\)khi x =  \(\frac{9}{2}\)

8 tháng 9 2017

a) M = x2 + 4x + 9 = x2 + 4x + 4 + 5 = (x + 2)2 + 5 

Vì : \(\left(x+2\right)^2\ge0\forall x\in R\) 

Nên M = (x + 2)2 + 5 \(\ge5\forall x\in R\)

Vậy Mmin = 5 khi x = -2

b) N = x2 - 20x + 101 = x2 - 20x + 100 + 1 = (x - 10)2 + 1 

Vì \(\left(x-10\right)^2\ge0\forall x\in R\)

Nên : N = (x - 10)2 + 1 \(\ge1\forall x\in R\)

Vậy Nmin = 1 khi x = 10

Bài 2 : 

a) C = -y2 + 6y - 15 = -(y2 - 6y + 15) = -(y2 - 6y + 9 + 6) = -(y2 - 6y + 9) - 6 = -(y - 3)2 - 6

Vì \(-\left(y-3\right)^2\le0\forall x\in R\)

 Nên : C = -(y - 3)2 - 6 \(\le-6\forall x\in R\)

Vậy Cmin = -6 khi y = 3 

b) B = -x2 + 9x - 12 = -(x2 - 9x + 12) = -(x2 - 9x +  \(\frac{81}{4}-\frac{33}{4}\)) = \(-\left(x-\frac{9}{2}\right)^2+\frac{33}{4}\)

Vì \(-\left(x-\frac{9}{2}\right)^2\le0\forall x\in R\)

Nên :  B = \(-\left(x-\frac{9}{2}\right)^2+\frac{33}{4}\) \(\le\frac{33}{4}\forall x\in R\)

Vậy Bmin \(\frac{33}{4}\) khi \(x=\frac{9}{2}\)