K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2018

+) Có A,B thuộc đường tròn (O;R) 

=> OA = OB = R Mà AB = R

=> OA = OB = AB => tam giác AOB đều ( định nghĩa tam giác đều)

=> góc AOB = 60 độ ( tính chất tam giác đều)

Trong đường tròn (O;R) có góc AOB là góc ở tâm chắn cung AB nhỏ 

=> số đo cung AB nhỏ = góc AOB = 60 độ (tính chất góc ở tâm )

+) Có B,C thuộc đường tròn (O;R) => OB=OC=R

Có OB^2 + OC^2 = R^2 + R^2= 2*R^2 = BC^2 ( vì BC = R\(\sqrt{2}\) )

=> tam giác BOC vuông ở O ( định lý Py-ta-go đảo )

=> góc BOC = 90 độ

Trong đường tròn (O;R) có góc BOC là góc ở tâm chắn cung BC nhỏ 

=> góc BOC = số đo cung BC nhỏ ( tính chất góc ở tâm) => số đo cung BC nhỏ = 90 độ

+) Vì tia BO nằm giữa 2 tia BA và BC nên B nằm giữa A và C

=> số đo cung AB nhỏ + số đo cung BC nhỏ = số đo cung AC nhỏ

=> số đo cung AC nhỏ = 60 độ + 90 độ = 150 độ

k cho mk nha !!!!!!!!!!!

13 tháng 7 2018

Hình tròn tâm O có bán kính là r và đường kính là d thì chu vi hình tròn tâm O là:         

C = d × 3,14 hoặc C = r × 2 × 3,14

Vậy cả A và B đều đúng.

Đáp án C

29 tháng 3 2016

a) Tứ giác AOBE nội tiếng ( 2 góc đối = 180 độ ) 

b) tam giác OMH đồng dạng tam giác OIK ( góc hóc) ==> đpcm

c) Có MI vuông góc AB, IA=IB==> tam gisc MAB cân tại M 

đồng thời E cách đều AB, ==> đpcm 

28 tháng 6 2017

a) M, BN, C, D              

b) B, K                

c) A, I, G

d)  CN

e) MN

17 tháng 9 2019

a) M, BN, C, D

b) B, K                

c) A, I, G

d)  CN

e) MN.

16 tháng 7 2020

A B O H D C

a. Tam giác ABC cân tại A nên AH là đường cao đồng thời cũng là đường trung trực của BC.

Vì O là tâm của đường tròn ngoại tiếp tam giác ABC nên O nằm trên đường trung trực của BC hay O thuộc AD.

Suy ra AD là đường kính của (O).

b. Tam giác ACD nội tiếp trong (O) có AD là đường kính nên suy ra góc CAD = 90o

c. Ta có :\(AH \perp BC\Rightarrow HB=HC=\frac{BC}{2}=\frac{24}{2}=12\left(cm\right)\)

Áp dụng định lí Pitago vào tam giác vuông ACH ta có:

AC2 = AH2 + HC2

Suy ra: AH2 = AC2 - HC2 = 202 - 122 = 400 - 144 = 256

AH = 16 (cm)

Tam giác ACD vuông tại C nên theo hệ thức liên hệ giữa cạnh góc vuông và hình chiếu, ta có:

\(AC^2=AH.AD\Rightarrow AD=\frac{AC^2}{AH}=\frac{20^2}{16}=25\left(cm\right)\)

Vậy bán kính của đường tròn (O) là: \(R=\frac{AD}{2}=\frac{25}{2}=12,5\left(cm\right)\)

Bán kính đường tron (O) bằng 12,5 cm