So sánh P và Q
\(P=\dfrac{2010}{2011}+\dfrac{2010}{2012}+\dfrac{2012}{2013};Q=\dfrac{2010+2011+2012}{2011+2012+2013}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Q=\dfrac{2010+2011+2012}{2011+2012+2013}=\dfrac{2010}{2011+2012+2013}+\dfrac{2011}{2011+2012+2013}+\dfrac{2012}{2011+2012+2013}\)
Ta có: \(\dfrac{2010}{2011+2012+2013}< \dfrac{2010}{2011}\)
\(\dfrac{2011}{2011+2012+2013}< \dfrac{2011}{2012}\)
\(\dfrac{2012}{2011< 2012< 2013}< \dfrac{2012}{2013}\)
\(\Rightarrow\dfrac{2010}{2011+2012+2013}+\dfrac{2011}{2011+2012+2013}+\dfrac{2012}{2011+2012+2013}\)
\(\dfrac{2010}{2011}+\dfrac{2011}{2012}+\dfrac{2012}{2013}\)
\(P>Q\)
bạn tham khảo:
2010/2011+2012+2013 > 2010+2011+2012/2011+2012+2013
2011/2011+2012+2013 > 2010+2011+2012/2011+2012+2013
2012/2011+2012+2013 > 2010+2011+2012/2011+2012+2013
=> 2010/2011+2011/2012+2012/2013 > 2010+2011+2012/2011+2012+2013
2010/2011+2012+2013 > 2010+2011+2012/2011+2012+2013
2011/2011+2012+2013 > 2010+2011+2012/2011+2012+2013
2012/2011+2012+2013 > 2010+2011+2012/2011+2012+2013
=> 2010/2011+2011/2012+2012/2013 > 2010+2011+2012/2011+2012+2013
\(P=\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}\)
\(P>\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)
\(P>\frac{2010+2011+2012}{2011+2012+2013}\)
\(P>Q\)
Ta có:
\(A=\dfrac{2010}{2011}+\dfrac{2011}{2012}\)
\(B=\dfrac{2010+2011}{2011+2012}\)
\(=\dfrac{2010}{2011+2012}+\dfrac{2011}{2011+2012}\)
Áp dụng tính chất \(\dfrac{a}{b}>\dfrac{a}{b+m}\) ta có:
\(\left\{{}\begin{matrix}\dfrac{2010}{2011}>\dfrac{2010}{2011+2012}\\\dfrac{2011}{2012}>\dfrac{2011}{2011+2012}\end{matrix}\right.\)
\(\Rightarrow\dfrac{2010}{2011}+\dfrac{2011}{2012}>\dfrac{2010}{2011+2012}+\dfrac{2011}{2011+2012}\)
Hay \(\dfrac{2010}{2011}+\dfrac{2011}{2012}>\dfrac{2010+2011}{2011+2012}\)
Vậy \(A>B\)
\(Q=\dfrac{2010+2011+2012}{2011+2012+2013}=\dfrac{2010}{2011+2012+2013}+\dfrac{2011}{2011+2012+2013}+\dfrac{2012}{2011+2012+2013}\)Ta thấy:
\(\dfrac{2010}{2011}>\dfrac{2010}{2011+2012+2013}\\ \dfrac{2011}{2012}>\dfrac{2011}{2011+2012+2013}\\ \dfrac{2012}{2013}>\dfrac{2012}{2011+2012+2013}\\ \Rightarrow\dfrac{2010}{2011}+\dfrac{2011}{2012}+\dfrac{2012}{2013}>\dfrac{2010}{2011+2012+2013}+\dfrac{2011}{2011+2012+2013}+\dfrac{2012}{2011+2012+2013}\\ \Leftrightarrow P>Q\)
Vậy \(P>Q\)