K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2023

Ta có:

\(M=\dfrac{100^{100}+1}{100^{99}+1}\)

\(\Rightarrow\dfrac{M}{100}=\dfrac{100^{100}+1}{100\cdot\left(100^{99}+1\right)}\)

\(\Rightarrow\dfrac{M}{100}=\dfrac{100^{100}+1}{100^{100}+100}\)

\(\Rightarrow\dfrac{M}{100}=1-\dfrac{99}{100^{100}+100}\) 

\(N=\dfrac{100^{101}+1}{100^{100}+1}\)

\(\Rightarrow\dfrac{N}{100}=\dfrac{100^{101}+1}{100\cdot\left(100^{100}+1\right)}\)

\(\Rightarrow\dfrac{N}{100}=\dfrac{100^{101}+1}{100^{101}+100}\)

\(\Rightarrow\dfrac{N}{100}=1-\dfrac{99}{100^{101}+100}\)

Mà: \(100^{101}>100^{100}\)

\(\Rightarrow100^{101}+100>100^{100}+100\)

\(\Rightarrow\dfrac{99}{100^{101}+100}< \dfrac{99}{100^{100}+100}\)

\(\Rightarrow1-\dfrac{99}{101^{101}+100}< 1-\dfrac{99}{100^{100}+100}\)

\(\Rightarrow\dfrac{N}{100}< \dfrac{M}{100}\)

\(\Rightarrow N< M\)

31 tháng 10 2023

a: \(\dfrac{4^5\cdot9^4-2\cdot6^9}{2^{10}\cdot3^8+6^8\cdot20}\)

\(=\dfrac{2^{10}\cdot3^8-2\cdot2^9\cdot3^9}{2^{10}\cdot3^8+2^8\cdot3^8\cdot2^2\cdot5}\)

\(=\dfrac{2^{10}\cdot3^8-2^{10}\cdot3^9}{2^{10}\cdot3^8+2^{10}\cdot3^8\cdot5}\)

\(=\dfrac{2^{10}\cdot3^8\left(1-3\right)}{2^{10}\cdot3^8\left(1+5\right)}=\dfrac{-2}{6}=-\dfrac{1}{3}\)

25 tháng 3 2022

B>A?

25 tháng 3 2022

Tham khảo:

https://lazi.vn/edu/exercise/so-sanh-a-1-2-3-4-5-6-99-100-va-b-1-10

c: \(100C=\dfrac{100^{100}+100}{100^{100}+1}=1+\dfrac{99}{100^{100}+1}\)

\(100D=\dfrac{100^{101}+100}{100^{101}+1}=1+\dfrac{99}{100^{101}+1}\)

100^100+1<100^101+1

=>\(\dfrac{99}{100^{100}+1}>\dfrac{99}{100^{101}+1}\)

=>100C>100D

=>C>D

b: \(2020E=\dfrac{2020^{2022}+2020}{2020^{2022}+1}=1+\dfrac{2019}{2020^{2022}+1}\)

\(2020F=\dfrac{2020^{2021}+2020}{2020^{2021}+1}=1+\dfrac{2019}{2020^{2021}+1}\)

2020^2022+1>2020^2021+1(Do 2022>2021)

=>\(\dfrac{2019}{2020^{2022}+1}< \dfrac{2019}{2020^{2021}+1}\)

=>2020E<2020F

=>E<F

15 tháng 8 2023

hơi vô lí

 

2 tháng 2 2017

vì A và B đều có 1 nên ta bỏ 1 đi

Ta có : 100^100-100^99=9000......00000( tổng cộng có 198 số 0)

\(\frac{1}{100^{98}}=\frac{100}{100^{99}}\)nên \(\frac{1}{100^{99}}-\frac{1}{100^{98}}=\frac{-99}{100^{99}}\)

nhưng 900....000( 198 số 0) lớn hơn \(\frac{-99}{100^{99}}\)

=>A>B

20 tháng 10 2015

M= \(\frac{100^{100}+1}{100^{99}+1}=\frac{100^{100}+100-99}{100^{99}+1}=\frac{100^{100}+100}{100^{99}+1}-\frac{99}{100^{99}+1}=\frac{100.\left(100^{99}+1\right)}{100^{99}+1}-\frac{99}{100^{99}+1}\)

\(=100-\frac{99}{100^{99}+1}\)

N= \(\frac{100^{101}+1}{100^{100}+1}=\frac{100^{101}+100-99}{100^{100}+1}=\frac{100^{101}+100}{100^{100}+1}-\frac{99}{100^{100}+1}\)

\(=\frac{100.\left(100^{100}+1\right)}{100^{100}+1}-\frac{99}{100^{100}+1}=100-\frac{99}{100^{100}+1}\)

Vi 100100+1>10099+1

=> \(\frac{99}{100^{99}+1}>\frac{99}{100^{100}+1}\)

=> \(100-\frac{99}{100^{99}+1}<100-\frac{99}{100^{100}+1}\)

=> M<N

20 tháng 10 2015

uk ai cũng có lúc nhầm mà chẳng sao đâu bạn ak