Bài 7. (3 điểm) Cho hai đường tròn (O;R) và (O';r) tiếp xúc ngoài tại A. Tiếp tuyến chung ngoài MN cắt tiếp tuyến chung trong tại K (M, N là 2 tiếp điểm; M ∈ (O) và N ∈ (O')). a) Chứng minh AK = MK và △AMN là tam giác vuông. b) MA cắt (O') tại B, NA cắt (O) tại C. Chứng minh SAMN = SABC. c) Chứng minh BK và ON cắt nhau tại một điểm nằm trên (O').
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
a: Xét (O) có
KM,KA là các tiếp tuyến
Do đó: KM=KA(1)
Xét (O') có
KA,KN là các tiếp tuyến
Do đó: KA=KN(2)
Từ (1) và (2) suy ra KM=KN
mà M,K,N thẳng hàng
nên K là trung điểm của MN
Xét ΔAMN có
AK là đường trung tuyến
\(AK=\dfrac{MN}{2}\left(=MK\right)\)
Do đó: ΔAMN vuông tại A